
Build your own

LC Meter

Bruce E. Hall, W8BH

Part 3: Under the Hood.

Part 1 and Part 2 of this series cover construction and
basic operation of the LC Meter. Part 3 reviews the
software and shows you how to customize your meter.

Customize your meter

You deserve credit for building your own LC meter, so proudly add your name/callsign to the startup

display. To do this, open the LCmeter.ino file in the Arduino IDE and review the list of #define

statements near the beginning of the sketch. One of these statements is “#define OWNER”. Change the

value from “W8BH” to your name or callsign, keeping in mind that only a dozen or so characters will fit

comfortably on screen. Here is a quick review of how to upload changes to your meter:

1. Prepare your MCU programmer according to the manufacturer’s instructions and connect it to your

computer.

2. Confirm an intact USB link between the computer and programmer. If you are using a PC, open the

device manager and make sure that your programmer is listed. For example, on my PC the

programmer appears as “libusb-win32 devices -> AVRISP mkII”

3. From the Tools menu of the Arduino IDE,

• Select Board > “Arduino UNO”

• Select Programmer > AVRISP mkII (or your device)

4. Plug the programmers 6-wire cable onto to the programming header of your LC meter, making sure

that all 6 pins are firmly seated. If the programming cable has a red “pin 1” wire it will be facing LEFT

toward the DC jack.

5. Apply power to the LC meter. Slide the switch right to the ON position. (At this point, an AVRISP-

mkII’s LED will turn from red to green, confirming power to the board.)

6. Compile and upload the sketch, using the IDE command “Upload using programmer” <Ctrl><Shift>U.

The startup screen contains 4 customizable items. Here are the defines for all four:

#define DEVICE_NAME "LC meter" // device name
#define VERSION "2.0" // device version
#define OWNER "W8BH" // Your name or call here
#define WARMUP_TIME 8 // warm up time, in seconds

Try changing their values and observing the effect on the startup screen.

http://w8bh.net/
http://w8bh.net/LCmeter_BuildersGuide.pdf
http://w8bh.net/LCMeter_UsersGuide.pdf

Two other #defines deserve mention:

#define SHOW_BATTERY false // if true, show battery icon on screen
#define USE_AUDIO true // if true, use piezo element

The first of these puts a small battery icon in the top-right corner of the screen, updated every 3

minutes. It is off by default but is useful if you are powering your meter with a 9V battery. The second

#define determines whether the meter emits audio feedback. If you don’t like your meter beeping at

you, feel free to set this #define to false.

Finally, the LC meter uses display color to indicate which mode it’s in. By default, startup is white,

capacitance mode is yellow, inductance mode is blue, and calibration mode is green. These are all

changeable by editing the following defines:

#define C_COLOR TFT_YELLOW // color for capacitance screen
#define L_COLOR TFT_CYAN // color for inductance screen
#define CAL_COLOR TFT_GREEN // color of calibration screen
#define STARTUP_COLOR TFT_WHITE // color of startup screen
#define BATT_COLOR TFT_WHITE // color of battery icon

How does it work?

This meter is controlled by two keys. The meter spends most of its time idling, waiting for the user to

press one of the keys. The corresponding main code loop is only two lines long:

void loop() { // wait for user to press a button...
 if (LKeyPressed()) handleLKey(); // do something when L key is pressed
 else if (CKeyPressed()) handleCKey(); // do something when C key is pressed
}

When a key is pressed, the handler for the key is called. For this discussion we will focus on inductance,

keeping in mind that the capacitance routines are very similar. Here is the L-key (inductance) handler:

void handleLKey() { // do something when L key is pressed:
 newScreen("Inductance",L_COLOR); // start new titled screen
 setLEDs(1,0); // turn on the L LED
 wait(500); // how long did user press the L button?
 if (LKeyPressed()) doData(); // L long press = Engineering screen
 else doInductance(); // L short press = Inductance screen
 setLEDs(0,0); // turn off the LEDs
}

The handler waits for 500 milliseconds, then checks to see if the LKey is still pressed. This is how button

taps are distinguished from button holds. If the button is held down more than half a second, the meter

goes into Engineering mode. Otherwise, it goes into Inductance Mode and measures the unknown

device as an inductor.

The work of measuring an inductor is done by the doInductance() routine. After setting up the screen, it

does 4 consecutive measurements, one second apart:

void doInductance() {
 setMode(L_MODE); // relay off when measuring L
 stabilize(); // allow oscillator time to stabilize
 for (int i=0; i<4; i++) { // do 4 measurements, 1 sec apart
 float msmt = getInductance(); // calculate L value

 showResult(msmt); // show msmt on screen
 showUnits(msmt); // and show units in title bar
 sendData(msmt); // and send it to serial port
 dit(); // announce each measurement
 wait(1000); // wait one second before next msmt
 }
}

The important lines are highlighted above. The “for” statement creates a loop that is executed four

times. The getInductance() routine does all the hard work, calculating the inductance of the device

under test. It returns a floating-point number named msmt. That measurement value is shown on the

screen by the showResult() routine. The measurements are spaced at 1 second intervals by the

wait(1000) statement.

Converting Oscillator frequency into Capacitance & Inductance

To summarize so far: pressing the L-key results in a call to LKeyHandler(), which in turn calls

doInductance(). That routine displays the Inductance screen and then makes several calls to

getInductance(). So far, so good. But how do we measure Inductance, you ask. How does the

getInductance() routine work? It works by considering the frequency of the onboard oscillator. The

frequency changes when the device under test is added to the oscillator circuit. We can determine the

device’s value by clever algebraic manipulation of the oscillator frequencies.

Neil Hecht is credited with the following method. I encourage you to watch coreWeaver’s YouTube

video, as he demonstrates the algebra of going from the resonant frequency equation (F =
1

2𝜋√𝐿𝐶
) to

equations that express the unknown value in terms of frequencies.

Using Neil’s method,

Cx = [
(

𝐹1

𝐹3
)

2
−1

(
𝐹1

𝐹2
)

2
−1

]* Ccal

Lx = ⌊(
𝐹1

𝐹3
)

2
− 1⌋ ∗ [(

𝐹1

𝐹2
)

2
− 1] ∗ (

1

𝐶𝑐𝑎𝑙
) ∗ (

1

2𝜋𝐹1
)

2

Where:
F1 = frequency with no calibration cap, no unknown
F2 = frequency with calibration cap in circuit, no unknown.
F3 = frequency with unknown in circuit, no calibration cap

The oscillator frequency is measured under three conditions. First, with an in-circuit inductor and

capacitor. This is called F1. Next, with a calibration capacitor added in parallel with the LC tank. This is

called F2. And finally, with the unknown component added to the LC tank. The resulting frequency is

called F3.

https://www.youtube.com/watch?v=KhJiE4gL5T4
https://www.youtube.com/watch?v=KhJiE4gL5T4

Unknown inductors are added in series with the in-circuit inductor. Unknown capacitors are added in

parallel to the in-circuit capacitor. The action of adding a series inductance or parallel capacitance is

controlled by a DPDT relay.

Note that Lx and Cx both depend on the calibration capacitor value. For accurate measurements, Ccal

should have a tolerance of 1% or less.

As intimidating as these equations seem, coding them is not too difficult:

float getCapacitance() { // CAPACITANCE EQUATIONS:
 F3 = frequency; // save current frequency
 float p = (float)F1*F1/F3/F3; // (F1^2)/(F3^2)
 float q = (float)F1*F1/F2/F2; // (F1^2)/(F2^2)
 float r = (p-1)/(q-1)*CCAL; // this is the capacitance equation
 return r; // result in picoFarads
}

float getInductance() { // INDUCTANCE EQUATIONS:
 F3 = frequency; // save current frequency
 float p = (float)F1*F1/F3/F3; // (F1^2)/(F3^2)
 float q = (float)F1*F1/F2/F2; // (F1^2)/(F2^2)
 float s = 2 * 3.1415926 * F1; // 2pi*F1
 float r = (p-1)*(q-1)/CCAL/s/s; // this is the inductance equation
 return (r*1E24); // convert to picoHenries

And that’s how it’s done.

Hardware Timers

Those calculations are a lot to digest. If you are satisfied, stop here, and continue living your sane and

happy life. But you might have a nagging thought: how does this meter determine the oscillator

frequencies? It’s not a frequency counter. The answer is that we program a poor-man’s frequency

counter into our LC meter sketch. Continue reading if you are interested in learning how.

Here is the basic idea. Count the number of pulses in exactly one second, and that number is the

frequency in Hertz. 1000 pulses per second = 1000 Hz. We need two routines: one to count pulses, and

one measure exactly one second. Both routines require use of special hardware counters that reside

inside the MCU.

The ATmega328 MCU contains three internal timer/counters, which I abbreviate TC0, TC1, and TC2. TC0

and TC2 are 8-bit counters, meaning that they can count to 256. TC1 is 16 bits in size. What do these

devices count? Usually, they count the MCU’s own clock pulses or some fraction thereof. And each

timer/counter has several different modes of operation. We will only use the mode called “Clear Timer

on Compare Match” (CTC), in which the timer counts to a certain value and then resets to zero.

Back to the topic at hand: how can we measure a second? Set TC1 to count clock cycles until exactly

one second has passed. If our clock is running at 8 MHz, then we must count to 8,000,000 to mark out 1

second. This is number is too large for our 16-bit counter, which only has enough bits to count to

65536. But, by using a prescalar, we can specify a much slower clock, and therefore won’t have to count

so high. For example, a prescalar of 256 will result in a clock of 8MHz/256 or 31.250 kHz. If we count to

31250 with this lower frequency clock, exactly 1 second will have passed.

You can set up TC1 with Arduino code.

Each of the Timer/Counters has several

named registers for this purpose. For

example, the register containing the

count is called TCNT1 and the compare

match register is called OCR1A. TCNT1

starts at 0 and counts as high as the value

in OCR1A before it resets. See diagram at

right. The following code snippet will

accomplish our 1 second timer:

 TCNT1 = 0; // TIMER1 SETUP: interrupts at 1 Hz
 TCCR1A = 0; // no external outputs
 TCCR1B = bit(WGM12) + bit(CS12); // CTC Mode; prescalar /256
 OCR1A = 31250-1; // compare match register 8 Mhz/256/1Hz
 TIMSK1 = bit(OCIE1A); // enable timer compare interrupt

Complicated, but bite sized. It puts TC1 into CTC mode, using a prescalar to reduce the counter input

frequency to 31.25 kHz, and counts 31249 pulses. When the 31250th pulse comes in, an interrupt is

generated and the counter resets.

TC1 is our one second timer. Now we need something to count the incoming pulses. I wrote above that

Timer/Counters usually count MCU clock pulses. However, TC0 and TC1 have a special mode in which

they count external pulses instead. The schematic and PCB connect the external oscillator to the input

pin of Timer0.

The following code will put TC0 into CTC mode, counting external pulses on pin PD4:

 TCNT0 = 0; // TIMER0 SETUP: count external pulses
 TCCR0A = bit(WGM01); // CTC Mode; no external outputs
 TCCR0B = bit(CS00)+bit(CS01)+bit(CS02); // use T0 (external) source = Digital 4
 OCR0A = 256-1; // count to 256
 TIMSK0 = bit(OCIE0A); // enable timer overflow interrupt

This 8-bit timer can’t count higher than 256. To get around this limitation, our Timer0 interrupt routine

increments an overflow counter each time that we’ve counted to 256. And our 1-second interrupt

routine for TC1 will multiply that count by 256 to get the total number of counts per second:

ISR(TIMER0_COMPA_vect) { // INTERRUPT SERVICE ROUTINE: Timer0 compare
 ovfCounter++; // increment overflow counter
}

ISR(TIMER1_COMPA_vect) { // INTERRUPT SERVICE ROUTINE: Timer1 compare
 int t0 = TCNT0; // save TCNT0
 TCNT0 = 0; // & reset TCNT0 as soon as possible
 frequency = (ovfCounter*256) + t0; // calculate total pulses in 1 second
 ovfCounter = 0; // reset overflow counter
 seconds++; // increment seconds counter
}

After setting up the timer registers and associated interrupt routines, the frequency counter is running

in the background, counting pulses on Arduino digital pin 4, and updating the measured frequency once

per second. We don’t have to tell it to start, or stop, or wait. It is always on.

TCNT1

As an aside, Timer/counter0 is used by the Arduino environment for several important timing functions:

delay(), millis() and micros(). If we use TC0, our own sketch - including any libraries that it uses - can no

longer call these important timing functions. So if we need a delay() routine, we must write our own.

The remaining hardware timer, TC2, can be used for this purpose. Consider the following code:

TCNT2 = 0; // TIMER2 SETUP: interrupts at 1000 Hz
TCCR2A = bit(WGM21); // CTC Mode; no external outputs
TCCR2B = bit(CS22); // prescalar /64
OCR2A = 125-1; // 8 Mhz/64/1000Hz = 125 (250 for 16MHz)
TIMSK2 = bit(OCIE2A); // enable timer compareA interrupt

The above lines will put TC2 into CTC mode and cause an interrupt to fire every millisecond. Our

corresponding interrupt routine will keep track of the number of milliseconds that have passed in a

global variable called ticks.

ISR(TIMER2_COMPA_vect) { // INTERRUPT SERVICE ROUTINE: Timer2 compare
 ticks++; // increment millisecond counter
}

Here is a replacement routine for the Arduino delay() routine, called wait(). It just waits in an empty

while loop until the specified number of milliseconds have passed:

void wait(int msDelay) { // substitute for Arduino delay() function
 long finished = ticks + msDelay; // time finished = now + specified delay
 while (ticks<finished) { }; // spin your wheels until time is up
}

A frequency counter sketch using all 3 timers is on my GitHub page as “LCM_Test5”.

Last edited: 4/12/2022 11:13 PM

https://github.com/bhall66/LC-meter/tree/main/diagnostics/LCM_Test5

