

Morse Code Tutor -

from the ground up

Part 3: More Morse

Bruce E. Hall, W8BH

This is part 3 of a series about an inexpensive device that helps you learn Morse Code. It is inspired by

Jack Purdum’s “Morse Code Tutor”, using a Blue Pill microcontroller board and the Arduino IDE.

Now that we are able to send Morse Code, it’s time to create routines that are useful in a learning

environment. For example, routines that send random letters, numbers, and words. How about a

random callsign generator? We will round out this part by adding paddles so that the user can practice

sending, too.

Random thoughts.

You cannot learn Morse Code by listening to the alphabet over and over. Once you hear ‘A’ you will

anticipate B, C, D and the rest without fully listening and comprehending them. So we need a way of

jumping around and presenting random characters. Arduino includes the random() function. It takes

two parameters, a & b, and outputs an integer result that lies between a and b. For example,

random(0,10) will output a number between 0 to 10. The minimum value is included as a possible

result but the maximum value is not. For example, possible results of random(0,4) are 0, 1, 2, and 3.

The numbers and alphabet are arranged in ascending order 0..9 and A..Z in the ASCII table, making our

job relatively easy. The alphabet starts with ‘A’, so start there and add a random offset:

char randomLetter() // returns a random uppercase letter

{

 return 'A'+random(0,26);

}

char randomNumber() // returns a random single-digit # 0-9

{

 return '0'+random(0,10);

}

Creating a routine to send random Letters is only a few lines of code:

http://w8bh.net/

void sendLetters() // send random letters forever...

{

 while (true)

 sendCharacter(randomLetter()); // send the letter

}

Listen to it and see how long you last. It is a bit tiring, isn’t it? The code never pauses. To make it more

natural sounding, it helps to break the characters up into groups or “words” of 5 characters each.

Adding the space between character groups makes it less tiresome:

#define WORDSIZE 5 // number of chars per random word

void sendLetters() // send random letters forever...

{

 while (true) {

 for (int i=0; i<WORDSIZE; i++) // break them up into "words"

 sendCharacter(randomLetter()); // send the letter

 sendCharacter(' '); // send a space between words

 }

}

Real Words.

Now let’s present the user with real words, not fake ones. At higher speeds it becomes very helpful to

learn the sound of the entire word, not just the letters. You aren’t reading this text one letter at a time;

you are reading the words. The same is true for (faster) Morse. Here are two ways for presenting

words: one is just a long list of non-randomized words in a single string, the other is a randomized list of

individual words:

char *commonWords = "a an the this these that some all any every who which what such

other I me my we us our you your he him his she her it its they them their man men people

time work well May will can one two great little first at by on upon over before to from

with in into out for of about up when then now how so like as well very only no not more

there than and or if but be am is are was were been has have had may can could will would

shall should must say said like go come do made work";

void sendCommonWords()

{

 while (true) {

 sendString(commonWords); // one long string of 100 words

 }

}

char *hamWords[] = {"DE", "TNX FER", "BT", "WX", "HR", "TEMP", "ES", "RIG", "ANT",

 "DIPOLE", "VERTICAL", "BEAM", "HW", "CPI", "WARM", "SUNNY",

 "CLOUDY", "COLD", "RAIN", "SNOW", "FOG","RPT", "NAME", "QTH",

 "CALL", "UR", "SLD", "FB", "RST”

 };

void sendHamWords() // send some common ham words

{

 while (true) {

 int index=random(0, ELEMENTS(hamWords)); // eeny, meany, miney, moe

 sendString(hamWords[index]); // send the word

 sendCharacter(' '); // and a space between words

 }

}

I hope that you find these routines simple enough to modify yourself. The only new concept is a macro

called ELEMENTS(), which takes the name of an array and returns the number of items in that array. It

must be defined in your code:

#define ELEMENTS(x) (sizeof(x) / sizeof(x[0]))

You do not need to use this macro. For instance, you could substitute the number 28 for

ELEMENTS(hamWords), since there are 28 words in that array. But what happens if you miscounted?

Or, imagine that you add 3 words to the list next month. If you forget to change the 28 to a 31, you will

never see the last three words in the list. Using ELEMENTS reduces errors and creates more easily

modifiable code.

Callsigns.

Callsigns are tricky to hear correctly, because they are (almost) random. So, practicing listening to them

is important. A random callsign generator is harder to program than a random word generator, but not

too hard. Let’s look at the code first and then parse it out:

char prefix[] = {'A', 'W', 'K', 'N'};

void createCallsign(char* call) // returns with random US callsign in "call"

{

 strcpy(call,""); // start with empty callsign

 int i = random(0, 4); // 4 possible start letters for US

 char c = prefix[i]; // Get first letter of prefix

 addChar(call,c); // and add it to callsign

 i = random(0,3); // single or double-letter prefix?

 if ((i==2) or (c=='A')) // do a double-letter prefix

 { // allowed combinations are:

 if (c=='A') i=random(0,12); // AA-AL, or

 else i=random(0,26); // KA-KZ, NA-NZ, WA-WZ

 addChar(call,'A'+i); // add second char to prefix

 }

 addChar(call,randomNumber()); // add zone number to callsign

 for (int i=0; i<random(1, 4); i++) // Suffix contains 1-3 letters

 addChar(call,randomLetter()); // add suffix letter(s) to call

}

The first issue is that handling strings in C or a C-like language is error-prone, and has led to all sorts of

workarounds and gotchas. Without going into too much detail, I will stick to the original, efficient

method of considering a string to be an array of characters, terminated at the end with a zero. Not the

character “0”, which has an ASCII value of 48, but the ASCII value ‘/0’. Using this method, the string

“HELLO” is an array of 6 character bytes with the values: 72, 69, 76, 76, 79, 0.

Next, there is no good way of returning such a string as the result of a function call. Unfortunately you

can’t do “callsign = makeRandomCallsign()” Yes, there are workarounds but they aren’t needed. The

preferred method is to pass a pointer to the string instead, and then let the code modify the contents of

the string. You must take care that the string has enough space to accommodate everything that your

routine adds to it.

The two routines, “strcpy” (string copy) and “strcat” (string concatenation) are safe for copying to and

adding to a string, respectively. Their first argument is the recipient string and the second argument is

the donor string. In the code above, strcpy(call,””) clears the contents of the string by copying a blank

string into call. There are other ways of doing it, but this is safe.

This routine creates random US callsigns. Feel free to modify it to your region of choice! US callsigns

start with a 1- or 2-character prefix, with the first character always K, N, W, or A. The following lines of

code randomize this choice:

 int i = random(0, 4); // 4 possible start letters for US

 char c = prefix[i]; // Get first letter of prefix

 addChar(call,c); // and add it to callsign

If the first character is A, it must be followed by another letter A through L. Otherwise, a second prefix

letter may or may not be present. The following lines account for those details:

 i = random(0,3); // single or double-letter prefix?

 if ((i==2) or (c=='A')) // do a double-letter prefix

 { // allowed combinations are:

 if (c=='A') i=random(0,12); // AA-AL, or

 else i=random(0,26); // KA-KZ, NA-NZ, WA-WZ

 addChar(call,'A'+i); // add second char to prefix

 }

The rest is easy: a zone number, followed by a suffix of 1 to 3 letters:

 addChar(call,randomNumber()); // add zone number to callsign

 for (int i=0; i<random(1, 4); i++) // Suffix contains 1-3 letters

 addChar(call,randomLetter()); // add suffix letter(s) to call

The strcat() function does not allow us to add a single character to a string, so I created a small helper

function addChar() to do that.

Paddle input.

We have spent a lot of time learning how to generate Morse Code,

because listening to and understanding code is usually harder than

manually sending it. But now that the code-creation routines are

relatively complete, it is time to add a set of paddles. Don’t have a

set of paddles yet? No problem, you can easily test this code by

touching the corresponding pins to ground. If you have a set of

paddles that you want to use, and they are terminated with an audio

plug, having a breakout board with a jack is very handy. I use the

sparkfun version (PRT-10588), pictured at right. They sell the

matching jack separately.

First, define which pins will be connected to the paddles:

#define PADDLE_A PB8 // Morse Paddle "dit"

#define PADDLE_B PB7 // Morse Paddle "dah"

Then, in your setup() routine, add both of those pins as inputs. They will be touched to ground by the

paddle, so use the internal pullup resistor to keep them at logic 1 levels until the paddle is pressed:

https://www.sparkfun.com/products/10588

pinMode(PADDLE_A, INPUT_PULLUP); // two paddle inputs, both active low

pinMode(PADDLE_B, INPUT_PULLUP);

 The keyer code is straightforward:

bool ditPressed()

{

 return (digitalRead(PADDLE_A)==0); // pin is active low

}

bool dahPressed()

{

 return (digitalRead(PADDLE_B)==0); // pin is active low

}

void doPaddles()

{

 while (true) {

 if (ditPressed()) dit(); // user wants a dit, so do it.

 if (dahPressed()) dah(); // user wants a dah, so do it.

 }

}

The keyer routine looks to see if either paddle is pressed, and issues dits and dahs accordingly.

ditPressed() will be true whenever the PADDLE_A pin is grounded, and dahPressed() will be true

whenever the PADDLE_B pin is grounded.

Part 3 Summary.

We now have a very capable set of routines that can send and receive Morse Code. In Part 4 we will

add a 2.2” LCD display, so that we can see the characters that are being sent and received.

See my github account for the source code.

73, Bruce.

http://w8bh.net/MorseTutor4.pdf
https://github.com/bhall66

