
Let’s build…
An NTP Server

By Bruce Hall, W8BH

PART 1: BASIC TIMEKEEPING

“What’s that?”, you might ask. Is it a clock? Is

it a Wi-Fi server? It’s a little of both.

NTP stands for Network Time Protocol, which is

the basis of distributing time information on

the internet. Developed in the 1980’s by David

Mills, it is perhaps the oldest internet protocol

still in active use.

This device is a GPS-disciplined clock with

microsecond resolution. It provides stunningly

accurate time information to any device on the

local wireless network. It does not suffer the delays associated with remote time providers. And it is

especially useful when Internet-based services are not available.

I like to start small and build my projects step-by-step. With each step I add a piece of hardware and/or

software, testing as I go. It is a great way to learn. Read on if you are interested in building an accurate

AND inexpensive NTP server.

STEP 0: THE ESP8266

We will base our NTP server on the

Expressif ESP8266. This small module

combines an 80 MHz, 32-bit MCU and Wi-Fi

radio. It is available in several different

configurations. The one shown here,

suitable for breadboard prototyping is the

Wemos D1 mini. A good reference guide to

the various modules and pinouts is here:

ESP8266 Pinout Reference

I assume that you are comfortable with the

Arduino IDE, have programmed an MCU

before, and have an ESP8266 board in your

https://randomnerdtutorials.com/esp8266-pinout-reference-gpios/

hands. The obligatory first step is uploading a blink sketch. Again, head on over to Random Nerd

Tutorials for helpful setup information: Installing ESP8266 in Arduino IDE. Briefly,

1. In the Arduino IDE, go to File > Preferences.

2. Select “Additional Board Manager URLS and add the following URL:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

3. Go to Tools > Board > Boards Manager.

4. Search for ESP8266 and press install for “ESP8266 by ESP8266 Community”. Wait until installed.

5. Return to Tools > Board and select ESP8266 Boards > D1 R2 and Mini

6. Plug the board into your computer using a USB cable.

7. Go to Tools > Port and select the port your board is using.

The D1 mini has a built-in LED on GPIO2. Its logic is inverted: turn it on by writing logic 0 and turn it off

by writing logic 1.

Upload a blink sketch to your board! In the IDE, go to File > Examples > 01. Basics > Blink and upload in

the usual manner. If successful, the LED (located next to the PCB antenna at the top right corner of the

board) will blink once every 2 seconds. Since many boards are already programmed to blink, I like

uploading a “double blink” sketch instead: step 0.ino. It lets me know that my upload was successful.

STEP 1: ADDING A GPS MODULE

Let’s add some hardware. GPS modules are now inexpensive and

widely available. For testing I use the Adafruit module (#746), the

uBlox NEO-M8N, and Amazon clones based on the NEO-6M.

Connect your GPS module to the ESP8266 as follows:

You will need just 2

wires for power and 1

line for data.

The GPS module works best with a clear view of the sky. Try to position your GPS unit near a window.

The module is a receiver on the 1.5 GHz band, listening for communications from GPS satellites orbiting

the earth. Each satellite transmits its location and timestamp. If at least four satellite signals are

received, the module can compute its own location with very good accuracy. In our application, we will

ignore the location data but use the timestamp.

Let’s write some software to test the serial connection.

Here is a simple sketch to see the data. Download the Step1 sketch from GitHub, reproduced here:

#include <SoftwareSerial.h>

SoftwareSerial gpsSerial(D5,D6); // set up UART for GPS data

void setup() {

 gpsSerial.begin(9600); // GPS Data @ 9600 baud

ESP8266 GPS module

3v3 “Vin” or “Vcc”

GND GND

D5 Tx

Adafruit "Ultimate GPS" module #746

https://randomnerdtutorials.com/how-to-install-esp8266-board-arduino-ide/
http://arduino.esp8266.com/stable/package_esp8266com_index.json
https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step0
https://www.adafruit.com/product/746
https://www.amazon.com/s?k=NEO-6M
https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step1

 Serial.begin(115200); // Serial monitor @ 115200 baud

}

void loop() {

 if (gpsSerial.available()) { // any data from GPS?

 char c = gpsSerial.read(); // yes, so get the next character

 Serial.print(c); // and echo it to serial monitor

 }

 }

The first line adds a built-in Arduino library for serial data communication (ESP8266 has a hardware serial

interface but it used by the board itself). The next line specifies on which pins data should be received

(pin D5) and transmitted (D6). Note that we are only receiving data in this example, so D6 is not used.

Feel free to connect D6 the GPS “Rx” pin if you like.

The setup() runs only at the beginning of the sketch. Here we set the data transmission rates. The GPS

module transmits asynchronous serial data on its “Tx” line at a rate of 9600 baud. (Some older modules

use 4800, and some newer models you 38600, so you should check the specs of your module if you are

using different hardware.)

In loop(), the sketch polls the GPS serial Tx pin for character data. The highlighted line above does all the

work. When a character is available, this line reads the character into variable ‘c’. The following line just

echoes, or ‘prints’ that character to the serial output monitor.

Upload the sketch and run it. Then open the serial monitor and set the baud rate to 115200. If

everything is configured correctly, you will see a flood of data from the GPS module. What does it all

mean?

STEP 2: PARSING THE GPS DATA

The GPS data is in NMEA format. Each line of output corresponds to a NMEA sentence, and each

sentence contains multiple data elements separated by commas. Here is an example for one type of

NMEA sentence:

“$GPGGA,033757.000,3942.9046,N,08410.5099,W,2,8,1.05,311.0,M,-33.4,M,0000,0000*61”

You can write your own parser to extract the data, but ready-made libraries are available and do the job

quite nicely. I use Mikal Hart’s “tinyGPS++”, available at https://github.com/mikalhart/TinyGPSPlus. Let’s

modify the code, using this library to extract the time data. Except for addition of the library its

associated gps object, the code starts the same:

#include <SoftwareSerial.h>

#include <TinyGPS++.h>

SoftwareSerial gpsSerial(D5,D7);

TinyGPSPlus gps;

void setup() {

 gpsSerial.begin(9600); // GPS Data @ 9600 baud

 Serial.begin(115200); // Serial monitor @ 115200 baud

}

https://github.com/mikalhart/TinyGPSPlus

void loop() {

 if (gpsSerial.available()) { // any data from GPS?

 char c = gpsSerial.read(); // yes, so get the next character

 if (gps.encode(c)) printTime(); // got NMEA, so print the time.

 }

}

Notice gps.encode() on the last line. This accepts the GPS data, character by character, and it returns

true whenever a full line of data has been received and decoded. The only thing left to do is to print the

time:

void printTime() {

 int h = gps.time.hour(); // get the hour

 if (h<10) Serial.print("0"); // make it 2 digits: '6'->'06'

 Serial.print(h); Serial.print(":"); // print the hour

 int m = gps.time.minute(); // get the minutes

 if (m<10) Serial.print("0"); // make it 2 digits: '6'->'06'

 Serial.print(m); Serial.print(":"); // print the minutes

 int s = gps.time.second(); // get the seconds

 if (s<10) Serial.print("0"); // make it 2 digits: '6'->'06'

 Serial.print(s); Serial.println(" UTC"); // print the seconds

}

Download Step2.ino. Run the sketch and you will see the current UTC time. The time is printed at the

completion of each NMEA data string, which happens several times per second. Position the GPS unit

near a window, if possible. It might take several minutes for your GPS unit to acquire enough satellites.

STEP 3: ADD AN OLED DISPLAY

I’ve made several different clocks. The clock I built for my ham

radio shack uses large seven-segment displays. My favorite

clocks use medium-sized LCDs. But for this project I am using a

tiny 0.96” OLED display. Why suffer such a small display? Those

of us of a certain age appreciate larger, bolder numbers.

This project uses an OLED display for several reasons:

1. Though small, these monochrome displays provide

excellent readability and contrast – even in daylight.

2. OLED displays require only two I/O pins. The ESP8266

has few unrestricted I/O pins, making this display easier to integrate than others.

3. OLED displays are inexpensive.

4. Displaying time, while important, is not the primary function of this project. We are providing

time information to networked devices – not human eyes.

Without going into a lot of detail, the ESP8266 places many restrictions on how its I/O pins can be used.

If we added an LCD display using the SPI bus, it would be difficult to accommodate the other hardware

(GPS input, RTC backup, etc).

https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step2

This OLED display has four pins. Connect its clock pin

(SCL or SCK) to ESP8266 “D1” and its serial data pin (SDA)

to the ESP8266 “D2” pin. Also connect 3.3v power (3v3)

and ground.

This display will require a library to drive it. I use the

Adafruit SSD1306 library. If you don’t already have it installed, go to Tools > Manage Libraries. Search

for and install the library named “Adafruit SSD1306”.

Test the display and driver with only 4 lines of code, highlighted below. From Step3.ino:

#include <SoftwareSerial.h>

#include <TinyGPS++.h>

#include <Adafruit_SSD1306.h> // Adafruit OLED library

SoftwareSerial gpsSerial(D5,D7);

TinyGPSPlus gps;

Adafruit_SSD1306 led(128,64,&Wire); // OLED display object

void setup() {

 gpsSerial.begin(9600); // GPS Data @ 9600 baud

 Serial.begin(115200); // Serial monitor @ 115200 baud

 led.begin(SSD1306_SWITCHCAPVCC,0x3C); // turn on OLED display

 led.display(); // and display Adafruit logo

}

void loop() {

… more code …

These four lines a) include the library, b) create a properly-sized OLED object, c) initialize the display, and

finally d) display the Adafruit logo. Which reminds me: Adafruit spends a lot of time on supporting

their products, so please consider buying from them.

STEP 4: DISPLAY THE TIME

We have a working display, and we have time information from the GPS. Put the two together so that

we show the time on our OLED display. Look at the printTime() routine in step 2 above, and consider

changing it so that the time output goes to the OLED display instead of the serial monitor. Here is the

code:

void displayTime() {

 led.clearDisplay(); // erase previous screen

 led.setCursor(0,0); // start at top-left

 int h = gps.time.hour(); // get the hour

 if (h<10) led.print("0"); // make it 2 digits: '6'->'06'

 led.print(h); led.print(":"); // print the hour

 int m = gps.time.minute(); // get the minutes

 if (m<10) led.print("0"); // make it 2 digits: '6'->'06'

 led.print(m); led.print(":"); // print the minutes

 int s = gps.time.second(); // get the seconds

 if (s<10) led.print("0"); // make it 2 digits: '6'->'06'

 led.print(s); // print the seconds

 led.display(); // show the result on screen

}

ESP8266 OLED module

3v3 VCC

GND GND

D1 SCL

D2 SDA

https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step3

The only differences, besides the name of the procedure, are the three highlighted lines above. In

addition, we need additional setup() code to specify the color and size of our text:

 led.setTextColor(WHITE); // white on black text

 led.setTextSize(2); // size 2 is easily readable

Get Step4.ino from GitHub and upload it to your ESP8266. We have a working GPS clock using only 35

lines of code.

The author’s breadboard for

Steps 4-8, containing (left to

right): Wemos D1 mini, GPS

module, and OLED display.

This breadboard contains all the

hardware you need for a full-

fledged NTP server.

STEP 5: SYNCHRONIZING WITH GPS

You may notice something odd about the displayed time. Depending on where you live, it may be one

or more hours fast (or slow). This is because GPS time does not know what time zone you are in – it

reports time in UTC (Coordinated Universal Time).

In addition, carefully compare your clock with an Internet time website, like timeanddate.com, time.is, or

time.gov. You may notice that the OLED clock is always a fraction of second slow compared to the online

clock. Why is that? From one of my earlier GPS clock articles:

It takes time to send (and read) GPS data. Each NMEA sentence sent from the GPS module at 9600 baud

takes about 50-100 milliseconds. Modules vary in terms of which sentences they send. My Adafruit

module sends 4 sentences every second, on average, with the whole packet 200-400 milliseconds in

duration. By the time the data is received and decoded, it is already old! Even the fastest microcontroller

and display are at the mercy of this delay. The clock is always a few hundred microseconds slow. No big

deal, perhaps, but it is enough delay to be visible.

https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step4
https://github.com/bhall66/NTP-Server
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://www.timeanddate.com/worldclock/timezone/utc
https://time.is/
https://time.gov/

Fortunately, there is a better solution. Most modules also provide a 1pps (1 pulse-per-second) output.

The leading edge of this pulse typically falls at the top of the second. In other words, the start of the

pulse corresponds to the start of the second. Serial RS-232 data immediately following this pulse will

give the time

corresponding to that

pulse. The digital

oscilloscope image

shows the

relationship between

the 1pps pulse in

yellow and the serial

data in blue.

The rising edge of the

1pps signal marks the

beginning of the

second. Each square

in the horizontal

direction equals 100 mS, or one tenth of a second. In the example above, the 1pps signal is 100 mS wide.

Serial data begins about 250 mS after the start of the second and lasts for roughly 425 mS. After

watching this display for a minute or so, it was interesting to see that the start and duration of the serial

data are both variable.

Here is the basic algorithm:

1. Continuously read the GPS data and decode it, as before.

2. When a GPS 1pps signal is received, display the time one second ahead.

The most interesting part is adding one second to the time. What? We need to advance the clock one

second because a 1pps signal indicates the start of a new second. In other words, the available time

data when the pulse occurs is always one second behind the actual time. So, add a second.

To prove it, let’s create a clock that displays the current time whenever the GPS 1pps signal arrives. We

will handle this signal with an interrupt, which requires a few special coding elements. First, we create

an interrupt handler that runs whenever the pulse occurs. This handler does only one thing: set a flag

that we can act on later. Here is the code for the flag and handler:

volatile int syncFlag = 0;

IRAM_ATTR void ppsHandler() { // 1pps interrupt handler

 syncFlag = 1; // flag the need to sync

}

The keywords volatile and IRAM_ATTR indicate that the code and data must be handled in a special way.

Next, designate one of the ESP8266 pins as an interrupt pin. This requires a special statement in the

setup() routine:

 attachInterrupt(digitalPinToInterrupt(// enable 1pps GPS time sync

 D7), ppsHandler, RISING);

https://en.wikipedia.org/wiki/Interrupt

Notice that it designates D7 as the interrupt pin and specifies the routine to call whenever a RISING

pulse is detected. The final change is to modify the program loop so that we display the time whenever

the syncFlag has been set:

void loop() {

 if (gpsSerial.available()) { // any data from GPS?

 char c = gpsSerial.read(); // yes, so get the next character

 gps.encode(c); // and feed it to GPS parser

 }

 if (syncFlag) { // 1pps signal received from GPS?

 syncFlag = 0; // yes, so reset the flag

 displayTime(); // and display the time

 }

}

The first part of the loop is unchanged. The highlighted section is new. It checks for the syncFlag and

calls displayTime() whenever the flag is raised. We also must reset the flag for the next 1pps pulse.

This code displays time within a few milliseconds of each 1pps pulse. Try it! Download Step5.ino from

GitHub, run it, and compare the time to an Internet clock. Time on the OLED display should update

simultaneously with the Internet clock. But is it the correct time, or one second behind?

In the Step5 source code, I suggest a few lines in displayTime() that add one second to the time. They

are commented out by default. Uncomment these lines to “add the missing second”.

WRAP UP

That’s it for Part 1. We created a GPS-based clock with

millisecond accuracy. Our NTP server does not require any

additional hardware –the rest of the project is just SMOP, or a

“simple matter of programming.” Read Part 2 to learn about

NTP and how to turn this clock into an NTP timeserver.

Last updated: July 2, 2023

Project Resources

• Part 1 (this document)

• Part 2: NTP Software

• Part 3: Builder’s Guide

• Schematic

• Interactive BOM

• Source Code

• PCB Gerbers

• Enclosure STL files

https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step5
http://w8bh.net/NTP_server_part2.pdf
http://w8bh.net/NTP_server_part1.pdf
http://w8bh.net/NTP_server_part1.pdf
http://w8bh.net/NTP_server_part2.pdf
http://w8bh.net/NTP_server_part3.pdf
http://w8bh.net/NTP_server_schematic.svg
http://w8bh.net/NTP_server_ibom.html
https://github.com/bhall66/NTP-Server
https://github.com/bhall66/NTP-Server/tree/main/PCB
https://www.thingiverse.com/w8bh/designs

