
Let’s build… 
An NTP Server 
 

By Bruce Hall, W8BH 

 

PART 2:  NTP 
 

This device is a GPS-disciplined clock with 

microsecond resolution.  It provides stunningly 

accurate time information to any device on the 

local wireless network.    

Part 1 introduced hardware and software for 

GPS timekeeping.   Part 2 explains how time is 

distributed on a computer network.   

 

STEP 6:   UDP LISTENER 

Time information on the Internet is formatted according to the NTP protocol and sent/received over UDP 

“User Datagram Protocol”.   Let’s write a small bit of code that listens for UDP.   Fortunately, there is an 

ESP8266 library for UDP that shields us from all the messy details.   So, the first thing our sketch contains 

is this library.   We need to throw in the WiFi library too, to interface with the radio hardware: 

#include <ESP8266WiFi.h>                         // WiFI support             

#include <WiFiUdp.h>                             // UDP packet support 

 

#define WIFI_SSID "networkID"                    // replace with your ID 

#define WIFI_PASS "password"                     // replace with your password 

#define UDP_PORT   1234 

 

The three defines specify the name and password for our local WiFi connection, and the port on which 

we will listen for UDP traffic.   Think of the UDP port as an address.    For this example, we arbitrarily 

chose 1234, but certain services use specific ports.   NTP, for example, uses port 123. 

There is excellent online documentation for the UDP library here:  UDP — ESP8266 Arduino Core   

The setup() code calls UDP.begin() to start listening for UDP messages: 

void setup() { 

  Serial.begin(115200); 

  connectToWiFi(); 

  UDP.begin(UDP_PORT); 

  Serial.print("Listening on UDP port "); 

  Serial.println(UDP_PORT); 

} 

 

http://w8bh.net/NTP_server_part1.pdf
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/udp-examples.html


And the loop call UDP.parsePacket() to detect incoming messages: 

void loop() { 

  int packetSize = UDP.parsePacket();        // look for packet data 

  if (packetSize) {                          // data was received, so... 

    printPacket();                           // print it out 

    acknowledgePacket();                     // and send a reply 

  } 

} 

 

Printing a packet calls UDP.read(), specifying a character buffer to store the data.   Since it is just a string 

of characters, it can be printed with Serial.print(): 

void printPacket() { 

  int len = UDP.read(packet, 255);          // read the data 

  packet[len] = '\0';                       // terminate the incoming string 

  Serial.print("Packet contents: "); 

  Serial.println(packet);                   // print the packet contents   

} 

 

Constructing a reply requires 3 calls:  beginPacket(), write(), and endPacket().   When endPacket() is 

called, the reply message is sent back to the remote device: 

void acknowledgePacket() { 

  UDP.beginPacket(UDP.remoteIP(),UDP.remotePort()); 

  UDP.write("Roger that!"); 

  UDP.endPacket(); 

} 

 

That’s the entire sketch.   To test it, 

1. Download Step6.ino from GitHub. 

2. Replace the SSID and password entries with your own network credentials. 

3. Open the Serial Monitor at baud rate 115200. 

4. Compile and upload the code to your board. 

The serial monitor will report when the MCU connects to your network.  After connecting to your 

network, it will listen for, print, and reply to all UDP messages sent to port 1234.    But how do we create 

UDP messages to test it?  You can either program a second ESP8266 to send messages, or… you can use 

a handy utility called “Packet Sender”.  Type your message, specify the IP address and port, and click 

‘Send’.    

 

STEP 7:   SENDING TIME MESSAGES 

Did you try Step 6 with Packet Sender, creating UPD messages and getting replies?    If not, go back and 

try it.   After you do, imagine that we type the UDP message “Time”.  And imagine that the answer 

returned by our sketch IS the time.   We don’t have to imagine it, because we have everything we need:  

Step 6 gave us the ability to send/receive messages and Step 5 gave us the time message to send.  All we 

need to do is merge the two sketches. 

Download and review Step7.ino.    Here is the new acknowledgement routine: 

void acknowledgePacket() { 

  int h = gps.time.hour();                    // get the hour 

https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step6
https://packetsender.com/
https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step7


  int m = gps.time.minute();                  // get the minutes 

  int s = gps.time.second();                  // get the seconds 

  sprintf(reply,"%02d:%02d:%02d UTC",h,m,s);  // copy time to reply buffer 

  Serial.print("Packet sent:     "); 

  Serial.println(reply);                      // print the packet sent  

   

  UDP.beginPacket(UDP.remoteIP(),UDP.remotePort()); 

  UDP.write(reply); 

  UDP.endPacket(); 

} 

 

The only tricky bit is stuffing a character buffer with formatted time, highlighted above.  Otherwise, this 

sketch is exactly the same as Step 5 and 6 combined.   Run it and you’ll see the same clock display as 

before.  But now, if you send it a UDP message to port 1234, it will reply with the current time.   Step 7 is 

a complete time server – in less than 100 lines of code! 

 

NETWORK TIME PROTOCOL (NTP) INTRODUCTION 

We are nearly there.  The last hurdle is formatting our time message according to the NTP specification.   

If our message is NTP formatted, it can be read and understood by nearly all network time-requesters.  

Conversely, if our message is not NTP formatted, it will be ignored by all time-requesters.  We must use 

NTP.   The plan forward is to take the Step7.ino sketch, put the time data into this NTP data structure, 

and call it Step8.   But a lot of explanation is needed first.     

Warning: a lot of technical details follow.   Feel free to skip to “Step 8” to preserve your sanity.    

 

 

GORY DETAILS I – NTP DATA STRUCTURE  

The basic structure of an NTP 

message is a 48-byte UDP packet.   

The packet is often represented by 

12 “chucks” of data, each 4 bytes in 

width. 

An NTP packet contains 4 different 

timestamps, each 8 bytes in length.  

NTP clients use these timestamps to 

help determine delays introduced 

by the network.    

Other NTP fields, such as precision, 

root delay, and root dispersion, 

provide information on the quality 

of the data being provided.  In other 

words, they indicate the amount of 

error the timestamps may contain. 



NTP has been around a long, long time.   Some consider it the oldest, active internet protocol in use 

today.   It is currently in version 4.    Here are links to the NTP reference documents: 

• Version 1: RFC 1059  

• Version 2: RFC 1119 

• Version 3: RFC 1305 

• Version 4: RFC 5905 

 
NTP timestamps are 8-bytes in length and have their own structure.   The first four bytes represent the 
number of seconds since 1/1/1900.   The last four bytes represent the fraction of a second, in units of 
2^-32 second (roughly 0.2 nanoseconds): 

 
      0                   1                   2                   3 

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

     |                         Integer Part                          | 

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

     |                         Fraction Part                         | 

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

The structure of an NTP packet can therefore be expressed in code like this: 

struct ntpTime_t {                        // NTP timestamp is 64-bits: 

  uint32_t seconds;                       // # seconds since 1/1/1900    

  uint32_t fraction;                      // 0x00000001 = 2^-32 second 

}; 

 

struct ntpPacket {                        // full packet is 48 bytes in length: 

  uint8_t    control;                     // leap, version, and mode 

  uint8_t    stratum;                     // 0=undef, 1=primary, 2-15 secondary 

  uint8_t    polling;                     // polling frequency, in 2^x seconds 

  int8_t     precision;                   // precision, in fraction of second 

  int32_t    rootDelay;                   // round-trip delay to/from reference 

  uint32_t   rootDispersion;              // maximum accumulated error 

  char       refID[4];                    // reference ID 

  ntpTime_t  referenceTime;               // time of last ref clock update 

  ntpTime_t  originateTime;               // time of client transmission 

  ntpTime_t  receiveTime;                 // time server received NTP request 

  ntpTime_t  transmitTime;                // time server/client sent message 

} 

 

Each component of the NTP data structure is discussed below. 

CONTROL:  The first byte in the NTP packet is the “Control” byte.   The format of its 8 bits is LLVVVMMM, 
where LL is leap second indicator, VVV is the NTP version number, and MMM is the mode.  Here are a 
few examples: 
  

• 0x1B = 0001.1011 = 00 011 011 = leap 0, ver 3, mode 3. 

• 0x13 = 0001.0011 = 00 010 011 = leap 0, ver 2, mode 3  

• 0x0B = 0000.1011 = 00 001 011 = leap 0, ver 1, mode 3.    
 

For the NTP request to be valid, the version number must be 1 through 4.   NTP has several different 
modes, but for our purposes all requests must be from clients (mode 3) and all replies are from a server 

https://datatracker.ietf.org/doc/html/rfc1059
https://www.rfc-editor.org/rfc/rfc1119.pdf
https://www.rfc-editor.org/rfc/rfc1305
https://www.rfc-editor.org/rfc/rfc5905


(mode 4).   A valid request will also have a leap second value of 0 (none) or 3 (unknown).   When replying 
to an NTP request, the version information should remain the same, but the mode must change from 
client to server.  One method is to mask the control byte with the 0x38, which will keep the version 
number intact but zero out the leap code and mode.  Adding 4 to the masked value will set the mode to 
mode 4 (server). 
 
STRATUM:  the level of each server in the hierarchy is defined by a stratum number.  Primary servers are 
assigned stratum one; secondary servers at each lower level are assigned stratum numbers one greater 
than the preceding level.  As the stratum number increases, its accuracy degrades depending on the 
network path and system clock stability.  Stratum numbers 1 through 16 are defined, where stratum 1 
represents a server attached to a reference clock like GPS.   Stratum 0 is undefined.  However, a server 
may send “Kiss-o’-Death” (KoD) messages to clients using a Stratum 0 packet. 
 
I find the next four fields (polling, precision, root delay, root dispersion) very confusing.  I have seen 
them interpreted in different ways.    
 
POLLING:  an exponent (2^x) that describes the maximum interval between successive messages.  Valid 
values range from 4 (2^4 = 16 seconds) to 17 (2^17 seconds = 36 hours).  Suggested minimum and 
maximum defaults are 6 and 10, respectively.   As far as I can tell, the POLLING number is not applicable 
to messages sent by a server. 
 
PRECISION: 8-bit signed integer representing the precision of the system clock, in log2 seconds.  For 
instance, a value of -20 corresponds to a precision of about one microsecond.  RFC 5909 states that 
precision can be determined when the service first starts up as the minimum time of several iterations to 
read the system clock.  I confess that I find that definition confusing.  A uBlox NEO-6M GPS generates its 
1ppm signal within 30 nS of the actual start of the second, on average, and within 60 nS 99% of the time.   
However, these results are reported by our server with a resolution of 1 microsecond.    Since GPS timing 
accuracy is so much finer than our ability to report it, precision of our “system” is constrained by its 1 
microsecond resolution.   I am therefore using a precision to -20.   Let me know if you think it should be 
something else! 
 
ROOT DELAY: is the total round-trip delay to the reference clock, in units of 2^-16 seconds.   The 
reference clock in our case is hardwired via external interrupt, so there is no “round-trip”.  The time from 
electrical impulse to recording time is on the order of 10 uS.   However, the time is not available until the 
interrupt routine has completed, making the effective interval from GPS hardware to server time about 
60 uS. 
 
ROOT DISPERSION: is the maximum error relative to the reference clock, in units of 2^-16 seconds.   For 
most systems, dispersion is highly dependent on the system clock.  As a ballpark figure, the ESP8266 
oscillator has a frequency drift of 25ppm.   Which is to say that one measured second by this clock could 
have an error +/- 25 microseconds.   If 8 seconds have passed since our last GPS synchronization, the 
time error could be as large as 8*25 = 200 uS. 
 
REFERENCE ID:  for secondary servers, this usually corresponds to their IP address.  But for primary 
(Stratum 1) servers, this field indicates the type of reference clock.   The value for our NTP server is 
“GPS”, since the GPS service is our time reference. 
 
The last four fields in the packet are all 64-bit timestamps, and defined as follows: 



REFERENCE TIMESTAMP:  the time when the system clock was last set or corrected. 
ORIGIN TIMESTAMP (t1):  the time at the client when the request departed for the server. 
RECEIVE TIMESTAMP (t2):  the time at the server when the request arrived from the client. 
TRANSMIT TIMESTAMP (t3):  the time at the server when the response left for the client. 
 
In addition, the client also records a DESTINATION TIMESTAMP (t4), not contained in the message, which 
is when the server response is received by the client. 
 
Why so many timestamps?  These timestamps are used by the client to determine and adjust for delays 
introduced by the network.  It is useful to know how a client uses 
the timestamp data.  Consider the following client-server 
example: 
 

1. Client sends a request packet at time t1, recording the 
time of its request as t1 (ORIGINATE).   In this example, 
the client’s clock is running slow. 

 
   

2. At time t2, when the packet arrives at the server, the 
server records t2 (RECEIVE), which is the time that the 
request was received. 

 
3. The server processes the request.  In this example, 

processing takes one second.  The server then sends a 
response back to the client at time t3 (TRANSMIT). 
 

4. The client receives the response at time t4 (DESTINATION), which for this example is 12:05:07.   
Destination time is not recorded in the NTP packet.  To summarize, t1 = 12:00:00, t2 = 12:05:03, 
t3 = 12:05:04, and t4 = 12:00:07.   

 
5. The client computes: 

a. Offset (theta) = Time at Server – Time at Client = ½ * [(t2-t1) + (t3-t4)] 
b. Round trip delay (delta) = Time from Client to server to Client = (t4-t1)-(t3-t2). 

 
Using the above data and formulas, 
 

a) Time offset between server and client = ½ * (05:03 + 04:57) = ½ * (10:00) = +5 minutes. 
b) Round-trip network delay = (00:07) – (00:01) = 6 seconds. 

 
Finally, the client adjusts its own time (adds 5 minutes), using an offset that is independent of network 
speed. 
 
 

  

Client NTP request  

…  

ORIGINATE TS 12:00:00 

RECEIVE TS  (blank) 

TRANSMIT TS 12:00:00 

Server NTP response  

…  

ORIGINATE TS 12:00:00 

RECEIVE TS  12:05:03 

TRANSMIT TS 12:05:04 



GORY DETAILS II – NTP TIMESTAMPS 

 
Time on Arduinos is in the Unix format:  the current time is the number of seconds since 1/1/1970.   
However, NTP time represents the number of seconds since 1/1/1900.   The difference between the two 
timestamps is exactly 70 years, which equates to over 2.2 billion seconds: 
   

NTP time = Unix Time + 2208988800 seconds 
 
Another annoying complication is “endianness”.  On 
the ESP8266, integers are stored in memory with the 
least-significant byte first.  On your local area network 
(and the Internet), however, those same integers travel 
with the most-significant byte first (see graphic).   For 
data transmitted over the internet, we must reverse 
the byte order before it can be used by the 
microcontroller.   Conversely, any data to be 
transmitted over the network must be converted from 
little-endian to big-endian format. 
 
Fortunately, there are dedicated functions for this 
purpose.  The function ntohl (read: “net to host long-
integer”) converts 4-byte integers from network (big-
endian) format to host (little-endian) format.   The 
function htonl() does the opposite conversion.  
 
The following lines of code take into account endianness, as well as the 70-year time difference: 
 
 netTime = htonl (hostTime + 2208988800L);  
 hostTime = ntohl(netTime) - 2208988800L; 
 
Once the timestamp data is correctly formatted, it can be put into a NTP timestamp structure.  Recall 
that an NTP timestamp has two components, a 4-byte value for seconds, and a 4-type value for the 
fraction of a second: 
 

struct ntpTime_t {                        // NTP timestamp is 64-bits: 

  uint32_t seconds;                       // # seconds since 1/1/1900    

  uint32_t fraction;                      // 0x00000001 = 2^-32 second 

}; 

 
Let’s assume that our server produces time to the nearest second.   Then the fractional part is zero.  Our 
code to fill a NTP timestamp now looks like this: 
 

time.seconds = htonl(t+2208988800L);      // convert host time to net time 

time.fraction = 0;                        // no fractional seconds 

 
Putting it all together, we can create a function that takes an Arduino/unix timestamp and creates the 

corresponding NTP timestamp: 

ntpTime_t unixToNTPTime(time_t t) { 

https://en.wikipedia.org/wiki/Endianness


  ntpTime_t response; 

  response.seconds = htonl(t+2208988800L);  

  response.fraction = 0);  

  return response; 

} 

 

 

STEP 8:   SERVING UP NTP TIME 

The preceding paragraphs stumped me for a long time.   Kudos to you if you got this far.    The NTP server 

creates NTP messages that contain time information.    Here is how we prepare a response message: 

void prepareResponse() {                          

  ntp.control        = (ntp.control&0x38)+4;    

  ntp.stratum        = 0x01;                      

  ntp.precision      = 0x00;                      

  strncpy(ntp.refID,"GPS",4);                     

  ntp.originateTime  = ntp.transmitTime;          

  ntp.referenceTime  = unixToNTPTime(now());      

  ntp.receiveTime    = ntp.referenceTime;         

  ntp.transmitTime   = ntp.referenceTime;         

} 

 

The first few fields are filled out as above (see NTP data structure).  The highlighted line shows the 

current time, returned by now(), formatted as an NTP timestamp.   This value is used to fill 

referenceTime, receiveTime, and transmitTIme.   

Setting originateTime is a bit tricky.  originateTime is the time when the requesting device sent its 

request – which is the value of ntp.transmitTime in the incoming request packet.  The first line of the 

following code takes data from the request packet and copies into the data structure: 

void answerQuery() { 

   memcpy(&ntp,&packet,sizeof(ntp)); 

   prepareResponse(); 

   memcpy(&packet,&ntp,sizeof(ntp)); 

   UDP.beginPacket(UDP.remoteIP(), UDP.remotePort()); 

   UDP.write(packet,sizeof(ntp)); 

   UDP.endPacket();  

} 

 

After the response is prepared, it then copies the data structure back into a packet for transmitting.   The 

final three lines send the UDP data packet out over the network.   

That covers Step8.ino, an NTP time server with one-second resolution.   Your breadboarded project is 

now capable of receiving NTP requests and serving up time on your local area network.   Try it!  Run the 

sketch and wait until the time and IP information appears on the OLED display.  Then, on a Windows11 

PC, open the control panel, then select “Clock and Region” > “Set the time and date” > “Internet Time” > 

“Change settings”.   For the server, enter the IP listed on your OLED display, such as 192.168.86.21, and 

click on the “Update Now” button.  If successful, Windows will report the time of synchronization. 

 

  

https://github.com/bhall66/NTP-Server/tree/main/Tutorials/Step8


BUT WAIT, THERES MORE 

Arduino time functions make it easy to manipulate time that is measured in seconds.   For most 

timekeeping, seconds are good enough.   However, GPS provides time accuracy to the microsecond.    

Additional coding makes it possible to add microsecond data, making this server a very accurate and 

precise time source. 

The final sketch, ntp_server.ino, adds the following features: 

• Microsecond time resolution. 
 

• RTC fallback when GPS is 
unavailable. 
 

• Customizable ASCII time 
output via serial port. 
 

• Display of GPS lock status 
and GPS satellite count. 
 

• Display of Wi-Fi signal 
strength and packets 
sent/received. 
 

• Wi-Fi credential setting via 
mobile phone. 

 

Best of all, it still runs on the breadboarded server from Part 1. 

 

Breadboarding is great for experimentation, but a more permanent solution is needed to make this a 

usable device.  Part 3 of this series describes how to build your own NTP time server. 

 

73, Bruce. 

 

Last updated:  July 2, 2023 

http://w8bh.net/NTP_server_part1.pdf
http://w8bh.net/NTP_server_part3.pdf

