

Pocket Tutor

Build a handheld version

Of the Morse Code Tutor

Part 3: The Microcontroller

Bruce E. Hall, W8BH

The original Morse Code Tutor uses the inexpensive and yet powerful “Blue Pill” microcontroller

module. At a cost of only a few dollars, it has out-of-the-box functionality far superior to the Arduino

and its clones. It has remarkable bang-for-the-buck.

And yet, the Blue Pill suffers a few disadvantages. First and foremost, quality control is lacking. Many

units have poorly soldered components and non-functional USB ports. Second, the microcontroller is

almost always a clone, and does not always have the exact functionality of the STM32 it is trying to

emulate. The memory capacity of the device varies from lot to lot. And most importantly, emulated

flash memory, used by Morse Code Tutor to store its settings, works on some modules but not others.

In this section we replace the Blue Pill with a genuine STM32 microcontroller. Yes, it costs a few dollars

more and does not come assembled. But we overcome many of the disadvantages noted above. And,

in the process of designing our own circuit, demystify the device. If you have ever thought about

building your own microcontroller project, read on. It is easier than you think.

Here is a photograph of the

microcontroller circuit on the Pocket

Tutor. Note the oval crystal in the center.

To the left of the crystal is the reset circuit,

(R11, C10) which is not installed. Above

the crystal is a diagnostic LED (D3) and its

current limiting resistor (R12). To the right

of the crystal is the microcontroller,

surrounded by four bypass caps. No other

components are required.

Easy-peasy!

http://w8bh.net/PocketTutor1.pdf
http://w8bh.net/
http://w8bh.net/MorseTutor1.pdf

The Blue Pill.

The “Blue Pill” became popular in 2017 as a clone of the Maple Mini, a microcontroller board designed

by LeafLabs in 2011. The centerpiece of the Blue Pill module is the STM32F103C8T6 microcontroller by

STMicroelectronics. In addition to the microcontroller, the Blue Pill board contains an 8 MHz crystal, a

32 kHz crystal, a voltage regulator, reset switch, and assorted resistors and caps. Here is the schematic.

Starting clockwise from top-left, there is a reset circuit, a programming header, two LEDS, some more

headers, the microcontroller, two crystals with caps, the USB connector, and finally the voltage

regulator with caps. A few months ago, I printed this schematic, circled what I needed, and crossed out

what I did not need. Try it yourself!

 Reset: keep, but optional. See below.
 Headers: no need for headers, except for the SWD, which is used for programming.
 LEDs: keep one of them as a diagnostic tool.
 uController: keep, obviously.
 Crystals: keep only the 8 MHz one.
 USB: cross out.
 Power supply: cross out. We have our own circuit for that.

OK, what is left?

https://www.leaflabs.com/maple/
https://www.st.com/en/microcontrollers-microprocessors/stm32f103c8.html

The remaining circuitry doesn’t look

as complicated.

The reset circuit, top-left, is just a

switch and RC debouncer for

resetting the microcontroller. If we

accidentally put the controller in an

infinite-loop, reset brings us back to

the start of the application.

In our application, reset isn’t

necessary. If the device stops

working, just cycle the power. I did

not solder mine in. However, reset is

helpful in the development phase of

any project, so I kept it in the design.

Similarly, a diagnostic LED is not needed for our application, but useful for testing purposes. Keep.

And finally, the crystal. Strictly speaking, this is not needed either, since the STM32 microcontroller can

run on its internal clock instead. However, the current Arduino environment assumes that you are using

a Maple/Blue Pill with an external 8 MHz crystal. We need to include the crystal if we want to program

in the Arduino IDE. The datasheet

recommends using the crystal with 2

capacitors and a high-value resistor.

Usually only the crystal is needed, but

I am including both loading capacitors

for better reliability. More on that

below.

We are left with 14 components: 3

components for reset, 2 for the LED, 1

programming header, 3 for the

crystal, 4 bypass capacitors and the

microcontroller itself.

Time to start creating our own

schematic. The graphic on the left

shows all 14 components. For all of

the passive components, I used the

same values as found on the Blue Pill

schematic. And I labelled the

microcontroller pins according to how

they are used in the Morse Code

Tutor. Everything is ready to be

connected.

Microcontroller Components

https://en.wikipedia.org/wiki/Infinite_loop

The reset circuit is just a pushbutton that is

debounced with a resistor and capacitor. The

microcontrollers reset line, called “NRST”, is normally

held high by the resistor. When the pushbutton is

pressed, it takes the line low. The capacitor keeps the

line low until it is sufficiently recharged. The 10K

resistor and 1 uF capacitor have a time constant of

(10K)(1u) = 10 milliseconds, which is adequate to

debounce mechanical switches that typically have

bounce times of a few milliseconds or less. Connect

the pushbutton, resistor, and capacitor to the NRST

line, as shown.

Next is the 8MHz crystal. The crystal is connected to our microcontroller on the PD0 and PD1 pins,

which by default are the external oscillator pins. The crystal is “loaded” by adding capacitors from each

leg of the crystal to ground. These capacitors are unique for each crystal, and determined by the

crystal’s Load Capacitance. For example, the datasheet for the ABL crystal I use specifies a load

capacitance of 18pF. The actual load capacitance is given by the formula: CL = (C8*C9)/(C8+C9) + Cstray,

where Cstray is estimated at 5 pF. Adafruit has a nice discussion about crystal loading here. By using

22pF capacitors, our estimated load capacitance is = (22*22)/(22+22)+5 = 16pF, which is acceptably

close. 27pF caps would work, too, and be even closer to the desired loading. Why did I use 20pF? I

have a bunch of 20pF caps. Loading capacitance is not critical for our application. If timing must be

precise and accurate, however, pay closer attention to this detail.

Next are the bypass capacitors. The datasheet for the

STM32 recommends a bypass capacitor for every set of

voltage pins on the microcontroller. These capacitors

serve two useful functions. First, they function as

energy reservoirs for the IC they serve, temporarily

supplying power in the event of a transient voltage

drop. Second, they filter high-frequency noise
Bypass Caps

Reset Circuit

https://en.wikipedia.org/wiki/RC_time_constant
https://blog.adafruit.com/2012/01/24/choosing-the-right-crystal-and-caps-for-your-design/

generated by the IC and/or surrounding circuitry. Often these capacitors will be shown in some unused

corner of the schematic sheet. And they might be shown lumped together in one circuit, as above. In

reality, they should be physically placed as close as possible to the power pins. If you look carefully, you

will see that there are 4 sets of power pins (VDD and VSS) on this controller. Each located on one side

of the 4-sided device. Look back at the photograph one page 1, and notice that there is one bypass cap

on each side of the microcontroller.

Finally, let’s add the diagnostic LED and a programming header, which connects to the SWDIO/PA13 and

SWCLK/PA14 pins of the microcontroller. Here is the final schematic:

The next part of the project is the audio circuit. Stay tuned.

73, Bruce.

http://w8bh.net/PocketTutor4.pdf

