

How to add IF offsets

to your DDS Development Kit

By Bruce Hall, W8BH

I like direct conversion receivers. They are simple to understand, simple to build, and sound

really nice. But sometimes we need the selectivity of a superhet. The mixer in a superhet

requires us to consider not one, but at least three different radio frequencies: the operating

frequency (OF), the local oscillator frequency (LO), and their product, the intermediate

frequency (IF). Here is an example mixer for 20M:

In the above example, the operating frequency is 14.215 MHz and the fixed IF frequency is 10.8

MHz. To tune a station at 14.215 MHz we‟ll set our VFO at 3.415 MHz. We want to use our

DDS kit for the VFO, of course, but we have to enter a number that doesn‟t resemble the

operating frequency at all. Ugh.

We can simplify the process by letting our smart DDS handle all of the calculations. It will show

us the operating frequency, but output the required LO frequency. In this example, we offset the

operating frequency by -10.8 MHz to get the VFO frequency. The term “IF offset” is often used,

but not quite correct: in some cases, there is no fixed “offset” number that will transform the

operating frequency into the correct LO frequency.

OF = 14.215 MHz

LO = 3.415 MHz

IF = 10.800 MHz

(IF = OF – LO)

2 Handling IF offsets

OF = 7.215 MHz

7.215MH

VFO = 3.785MHz

IF = 11.000 MHz

OF = 14.020

7.215MH

VFO = 4.020MHz

IF = 10.000 MHz

OF = 7.040 MHz

7.215MH

VFO = 16.040

IF = 9.000 MHz

In general, there are two mixer products: the sum and difference of the inputs. We only want

one signal, so we filter out the other. The remaining mixer output is the IF. There are three

ways of combining the inputs to get the IF:

a) Additive. The IF = OF + LO.

b) Subtractive, Low-side injection. The IF = OF – LO (like our example).

c) Subtractive, High-side injection. The IF = LO – OF.

Here is an example of each method.

A) Additive:

a. OF = 7.215 MHz

b. VFO = 3.785 MHz

c. IF = OF + VFO = 11 MHz

As OF increases, VFO decreases.

B) Subtractive, Low-side injection:

a. OF = 14.020 MHz

b. VFO = 4.020 MHz

c. IF = OF – VFO = 10 MHz

C) Subtractive, High-side injection

a. OF = 7.040 MHz

b. VFO = 16.040 MHz

c. IF = VFO – OF = 9 MHz

This mixer stuff is basic ham knowledge, I know. But I was amazed at how quickly I got

stumped when trying to figure out what the VFO output frequencies should be. I needed to write

out some examples. Once I did, the answer was simple algebra. For each method above:

a) Additive: VFO = IF – OF

b) Subtractive, Low-side injection: VFO = OF – IF

c) Subtractive, High-side injection: VFO = OF + IF

3 Handling IF offsets

Notice that the idea of a fixed offset does not work for the additive “A” mixer. There is no

number, added or subtracted from the operating frequency that will give you the VFO frequency.

For me, the term “IF offset” can be misleading.

Great, now how do we code it?? I am sure there are many ways. Diz gives us a very clever

way to do offsets with his original code. Unfortunately it can only add or subtract from the

operating frequency, so were out of luck if we have an additive (above, Type A) mixer. I

decided to focus on using manipulating frequency „magic numbers‟ instead. I chose them

because we‟ll ultimately need to do some addition and subtraction of frequencies, which are

bigger numbers than our 8-bit microcontroller can handle. At least the magic numbers, which

correspond to frequency, are already in a compact (32bit) binary form. If we try to do math on

the frequencies digits themselves, we‟ll have to come up with some math routines for large

decimal numbers. Too much work. It‟s left to the reader as an exercise!

For a discussion about magic numbers, please see my tutorial on AD9834 programming at

http://w8bh.net/avr/AD9834.pdf. When dealing with mixers we need to keep track of 3 different

frequencies (operating frequency, VFO frequency, and the IF). So our code will need to keep

track of three different sets of magic numbers. Here is a table of names for my frequency/magic

number pairs:

Frequency Magic Number

Operating Frequency “LCDrcve0” “rcve0”

VFO output frequency – not named “VFOmn”

Intermediate Frequency “IFfreq” “IFmn”

The operating frequency and its magic number were named by Diz in his original code, and

have not been changed. Funny names, eh? I added the other two. Using a top-down

approach, let‟s create routines for a) additive, b) subtractive, high-injection and c) subtractive,

low-injection mixers using the VFO frequency equations above. We‟ll just use the X, Y, and Z

registers to point to the magic numbers, and hope that we can program the adding and

subtracting later. Here is the code for the three IF routines:

IFModeA:

; additive mixer

; mixer equation: operating freq OF + VFO = IF

; In this mode, VFO goes down when OF goes up.

 ldi XH, high(IFmn) ;point to IF magic#

 ldi XL, low(IFmn)

 ldi YH, high(rcve0) ;point to OF magic#

 ldi YL, low(rcve0)

 ldi ZH, high(VFOmn) ;point to VFO magic#

 ldi ZL, low(VFOmn)

 rcall Comp32 ;is OF>IF?

 brlo if1 ;yes, so turn off

 rcall Sub32 ;no, set VFO = IF - OF

 rjmp if2

if1: rcall Clear32

if2: ret

http://w8bh.net/avr/AD9834.pdf

4 Handling IF offsets

IFModeB:

; subtractive mixer, with low-side injection

; mixer equation: OF - VFO = IF

 ldi XH, high(rcve0) ;point to OF magic#

 ldi XL, low(rcve0)

 ldi YH, high(IFmn) ;point to IF magic#

 ldi YL, low(IFmn)

 ldi ZH, high(VFOmn) ;point to VFO magic#

 ldi ZL, low(VFOmn)

 rcall Comp32 ;is OF<IF?

 brlo if3 ;yes, so turn off

 rcall Sub32 ;no, set VFO = OF - IF

 rjmp if4

if3: rcall Clear32

if4: ret

IFModeC:

; subtractive mixer, with high-side injection

; mixer equation: VFO - OF = IF

 ldi XH, high(IFmn) ;point to IF magic#

 ldi XL, low(IFmn)

 ldi YH, high(rcve0) ;point to OF magic#

 ldi YL, low(rcve0)

 ldi ZH, high(VFOmn) ;point to VFO magic#

 ldi ZL, low(VFOmn)

 rcall Add32 ;set VFO = OF + IF

 ret

That wasn‟t hard at all. Just point to what you want to add/subtract, point where you want the

result, and call a function (Add32/Sub32) to do the numerical mixing. We postponed the

calculation part. I searched for ways to add and subtract big numbers. It turns out that 32 bit

binary numbers are a cinch. Atmel, maker of our microcontroller chip, published an application

note on how to do it. Look for AVR202 which is now at

http://www.atmel.com/dyn/resources/prod_documents/doc0937.pdf. All we need to do is a

single-byte addition/subtraction, and then use the carry bit to continue to calculation to the next

byte. We can extend this for as many bytes we need. In our case, the 32-bit magic numbers

are four bytes long. Here are some math routines, using the X, Y, and Z pointers, that work on

a single byte at a time:

SUBBYTE:

; subtracts byte at Y from byte at X, with carry

; result put in byte at Z

; used for 32-bit substraction routine

 ld temp1,X+

 ld temp2,Y+

 sbc temp1,temp2 ;subtract Y from X

 st Z+,temp

 ret

ADDBYTE:

; adds byte at Y to byte at X, with carry

; result put in byte at Z

; used for 32-bit addition routine

http://www.atmel.com/dyn/resources/prod_documents/doc0937.pdf

5 Handling IF offsets

 ld temp1,X+

 ld temp2,Y+

 adc temp1,temp2 ;add Y to X

 st Z+,temp1

 ret

COMPBYTE:

; compare bytes at X and Y

; return flags compatible with branch instructions

 ld temp1,X+

 ld temp2,Y+

 cpc temp1,temp2

 ret

The carry bit is preserved by ST (store), RET (return) and RCALL, so any carry will be intact

between the end of one add/subtract/compare and start of the next one. With these building

blocks in place, doing the four-byte math is as easy as calling each routine four times. For

example,

ADD32:

; adds the 4-byte value at Y to the 4-byte value at X

; stores the four byte result at Z

 clc ;clear the carry bit

 rcall AddByte ;add 1st bytes (LSB)

 rcall AddByte ;2nd bytes

 rcall AddByte ;3rd bytes

 rcall AddByte ;4th bytes (MSB)

 ret

Routines for 4-byte subtract and compare are exactly the same. The hard part is done. Pick

the IF mode that you want, plug in a value for the IF magic#, do the math, and send the result to

the DDS. It works great. Then Tom, AK2B, reminded me that the mixer, while important for

receiving, is often not in the transmit chain. Could we have the IF offset active during receive

only? In the keyer articles, all of the dit and dah logic eventually funnels down to two routines,

KeyUp and KeyDown, which control the state of the Key output I/O line. This seems like a

good spot to control the IF calculation. If we are KeyDown, then it‟s time to transmit and the IF

is turned off. If we are KeyUp, then the receiver is active and the IF should be turned back on.

I tried a number of schemes to make the IF turn on and off. Some of them worked. They all

looked messy. Then I remembered that the DDS chip contain two different frequency registers.

We can load one of them with the receive frequency, and the other with the transmit frequency.

When keying, all we need to do is toggle between them. Here are the modified KeyUp and

KeyDown routines:

KEYDOWN:

 rcall DDSOutputB ;change to transmit freq

 sbi PortD,KeyOut ;turn on output line

 cbi PortC,LED ;turn on LED

 ret

6 Handling IF offsets

KEYUP:

 cbi PortD,KeyOut ;turn off output line

 sbi PortC,LED ;turn off LED

 rcall DDSOutputA ;change to receive freq

 ret

The only remaining issue is providing a user interface for selecting the mixer type and entering

the IF itself. The values will be stored in EEPROM, rather than in code, so that they can be

changed later without recompiling. Here is a chart of how I use the encoder and button for IF

settings.

MODE 5 (IF
SETTINGS)

Select mixer submode (A) Edit IF submode (B)

Encoder
Allow the user to scroll through the
mixer types

Allow the user to edit the digit at
the current cursor position

Button Tap
Select the displayed mixer type, and
go to edit submode to edit the IF.

Advance cursor to next IF digit

Button Hold Go to next mode (6)
Save the IF and go back to VFO
tuning mode

The first four routines, which handle events from the encoder and the pushbutton, branch to

submode A (select mixer type) or submode B (enter the IF) depending on the current state of

the „flags‟ variable:

ENCODERMODE5:

 lds temp1,flags

 sbrs temp1,2 ;check for alternate submode

 rjmp Encoder5A

 rjmp Encoder5B

TAPUP5:

 lds temp1,flags

 sbrs temp1,2 ;check for alternate submode

 rjmp TapUp5A

 rjmp TapUp5B

HOLDDOWN5:

 lds temp1,flags

 sbrs temp1,2 ;check for alternate submode

 rjmp HoldDown5A

 rjmp HoldDown5B

HOLDUP5:

7 Handling IF offsets

 lds temp1,flags

 sbrs temp1,2 ;check for alternate submode

 rjmp HoldUp5A

 rjmp HoldUp5B

The remaining routines handle the events. In submode A, rotating the encoder scrolls through
the 3 mixer options plus an option for no mixer. These are numerically coded 0 through 3:

ENCODER5A:

 ldi temp2,0 ;set lower limit

 ldi temp3,3 ;set upper limit

 lds temp1,IFmode ;get current IF mode

 rcall EncoderValue ;update speed based on encoder

 sts IFmode,temp1 ;save new speed value

 rcall ShowIFmode ;display it

 ret

A tap will select the displayed mixer option and save it to EEPROM. Unless „No mixer‟ was
chosen, the submode will switch to B and allow the user to enter the IF:

TAPUP5A:

 lds temp1,IFmode ;which IF mode was selected?

 tst temp1 ;are we IFmode0 = no mixer?

 breq Exit5 ;no mixer, so save & exit

 rcall SetAltMode ;mixer, so get IF freq

 rcall Init5B ;set up display first

 ret

In Submode B, the encoder is used to increment/decrement the IF digits. The code for this is a
close copy of the original source code, except that it does not alter our DDS output frequency.
A button tap advances the cursor by calling original code, too

ENCODER5B: ;See EncoderMode0 for description

 tst encoder

 brpl e52 ;which way did encoder rotate?

 inc encoder ;remove 1 negative rotation

 rcall DecFreq0 ;reduce displayed frequency

 cpi temp1,55 ;55 = all OK

 brne e51

 rcall IncFreq0 ;correct freq. underflow

 rjmp e55

e51: rcall DecFreq9 ;reduce magic number

 rjmp e54

e52: dec encoder ;remove 1 positive rotation

 rcall IncFreq0 ;increase displayed frequency

 cpi temp1,55 ;55 = all OK

 brne e53

 rcall DecFreq0 ;correct freq. overflow

 rjmp e55

e53: rcall IncFreq9 ;increase magic number

e54: rcall ShowFreq ;display new frequency

e55: rcall QuickBlink

 ret

8 Handling IF offsets

TAPDOWN5:

 rcall TapDown0 ;cursor advance

 ret

The mode is exited by holding down the button. On exit, the magic number for the entered
frequency is calculated, the value is saved, and the VFO output is updated based on the mixer
type and offset.

That‟s pretty much it. I skipped a few small parts, focusing on code that relates directly to
implementing IF. Information on programming the DDS registers, storing variables in EEPROM,
handling user interface events, and keyer routines are all covered in some of my previous
articles. Have Fun!

Other DDS articles

 Keypad tutorial: http://w8bh.net/avr/AddKeypadFull.pdf

 VFO Memory Project: http://w8bh.net/avr/AddMemories.pdf

 Extending Encoder Button Functionality: http://w8bh.net/avr/ButtonEvents.pdf

 How to use the EEPROM: http://w8bh.net/avr/EEPROM.pdf

 A Simple Iambic Keyer: http://w8bh.net/avr/IambicKeyer.pdf

 A Memory Keyer: http://w8bh.net/avr/MemoryKeyer.pdf

 A Programmable Keyer: http://w8bh.net/avr/MemoryKeyerII.pdf

Source Code

I haven‟t included the full source code because it is „in transition‟. Each time I copy text

between AVR studio and Word I lose some of the formatting. It takes time to adjust margins,

tabs, fonts, etc. It also is difficult for others to copy code from this pdf file back into AVR studio

without losing the formatting. To fix these problems I will post the assembler code as a text file,

separate from the PDF.

http://w8bh.net/avr/AddKeypadFull.pdf
http://w8bh.net/avr/AddMemories.pdf
http://w8bh.net/avr/ButtonEvents.pdf
http://w8bh.net/avr/EEPROM.pdf
http://w8bh.net/avr/IambicKeyer.pdf
http://w8bh.net/avr/MemoryKeyer.pdf
http://w8bh.net/avr/MemoryKeyerII.pdf

