

Adding an Iambic Keyer

to your DDS Development Kit

By Bruce Hall, W8BH

This article will describe how to add a very simple iambic keyer to your DDS Development kit.

But wait a second, why bother? There are already good keyers available, with loads of built-in

functions. I use a TiCK keyer chip in some of my QRP transmitters, and it works very well. I

added keyer code to the DDS kit for three reasons. First, I wanted to learn how to do it.

Second, I wondered if I could create something in code (for free) that would save me a few

bucks on the keyer chip. And third, I wanted to integrate the keyer with the DDS kit, so that

message memories displayed on the LCD as they were sent.

The first thing to figure out is where to

attach the key! We need at least 3 I/O

lines for a keyer: two input lines for the

paddles, left and right, and one output

line to key the rig. I already used a

bunch of I/O lines for my keypad (see

http://w8bh.net/avr/AddKeypadFull.pdf),

so my options were somewhat limited.

I decided to use the two available pins

on Port C for my paddles, and the one

remaining pin on Port D for my keyer output.

WA2MZE has pointed out that you could free up 4 of the keypad I/O lines if you ‘multi-purposed’

outputs of the 74HC164 shift register. This is a great idea, and I might need to rewrite the

keypad routines to take advantage of the savings. Unfortunately, these four lines aren’t readily

available – you’ll need to solder some wires to the LCD module or PCB if you want to use them.

Calculating Code Speed

Even though I’ve been using CW on and off (pun intended) for many years, I didn’t know much

about code speed and timing until a few weeks ago. Perhaps most of you know your Iambic A

from your Iambic B. I didn’t! After hooking up my key to pins PC4 and PC5 (and common to

Bit Number Port B Port C Port D

0 Keypad C2 LCD DDS

1 Keypad C3 LCD DDS

2 Keypad R1 LCD Encoder

3 Keypad R2 Led Encoder

4 Keypad R3 (unused) Encoder

5 Keypad R4 (unused) DDS

6 xtal Reset (unused)

7 xtal --- Keypad C1

http://w8bh.net/avr/AddKeypadFull.pdf

2 Adding an Iambic Keyer

ground), I wanted to be able to send some dits. Pretty easy! It is just like blinking the LED, at

the start of my keypad experiments. The algorithm looks like this: key down, wait a while, key

up, wait a while, done. But how long is a dit? How long do we wait? It depends on the code

speed of course, but how?

Code speed, in words per minute, is defined by the number of 5 character words that are sent

within one minute. Specifically, the word PARIS is used to calculate speed. PARIS contains

exactly 50 elements, where each element is the length of a dit, and 3 elements is the length of a

dah. There is also one element between dits/dahs, 3 elements between characters, and 7

elements between words. Here is the breakdown:

P = dit-dah-dah-dit = 2 + 4 + 4 + 1 + 3 char spacing = 14 elements

A = dit-dah = 2 + 3 + 3 char spacing = 8 elements

R = dit-dah-dit = 2 + 4 + 1 + 3 char spacing = 10 elements

I = dit-dit = 2 + 1 + 3 char spacing = 6 elements

S = dit-dit-dit = 2 + 2 + 1 + 7 word spacing = 12 elements

A better explanation of all this is found on the Kent Engineers website at http://www.kent-

engineers.com/codespeed.htm. At 5 WPM, five of these PARIS words or 250 elements are sent

in 60 seconds. Therefore the element length is 60/250 = 0.24 seconds. A little algebra gives us

a general formula of dit-length (in milliseconds) = 1200/code speed (in WPM).

Getting dit-length in milliseconds is quite handy, because the DDS kit includes a very accurate

millisecond timer. The 20.48 MHz crystal frequency (thanks Diz), divided by 1024 internally,

yields an interrupt clock frequency of 50 microseconds. This clock is further divided by 200 in

the DDS software to give us a 1 millisecond delay. Call the wait routine with the number of

milliseconds (say 120) and viola, a timer for 10 WPM! We know enough now to write half of the

keyer code:

.equ KeyOut = PD6

DIT:

 rcall KeyDown

 rcall DitWait ;key down for 1 dit

 rcall KeyUp

 rcall DitWait ;key up for 1 dit

 ret

DAH:

 rcall KeyDown

 rcall DahWait ;key down for 1 dah

 rcall KeyUp

 rcall DitWait ;key up for 1 dit

 ret

KEYDOWN:

 cbi PortD,KeyOut ;turn on output line

 cbi PortC,LED ;turn on LED

 ret

KEYUP:

 sbi PortD,KeyOut ;turn off output line

http://www.kent-engineers.com/codespeed.htm
http://www.kent-engineers.com/codespeed.htm

3 Adding an Iambic Keyer

 sbi PortC,LED ;turn off LED

 ret

DITWAIT:

 ldi delay,120 ;120ms = 10 WPM code

 rcall wait

 ret

DAHWAIT:

 ;wait for 3 dits

 rcall DitWait

 rcall DitWait

 rcall DitWait

 ret

The only tricks here are using the CBI ‘clear bit I/O’ instruction to set our outputs active-low, and

the SBI ‘set bit I/O’ instruction to set our outputs high again.

Paddle Inputs

These routines compile just fine, but they don’t do anything yet. We have to look at our paddle

inputs, and call the ‘dit’ and ‘dah’ routines accordingly. The AVR instruction set gives us several

different ways to check the value of an I/O pin. I use SBIS ‘skip if I/O bit is set’ to branch

according to the value of the paddle input. Here is the code:

.equ LPaddle = PC5

.equ RPaddle = PC4

CHECKKEY:

; Checks to see if either of the paddles has been pressed.

; Paddle inputs are active low

 sbis PinC,LPaddle ;dit (left) paddle pressed?

 rcall LPaddleDown ;yes, so do it

 sbis PinC,RPaddle ;dah (right) paddle pressed?

 rcall RPaddleDown ;yes, so do it

 ret

LPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 rcall Dit ;just send a dit for now

 ret

RPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 rcall Dah ;just send a dah for now

 ret

CheckKey does all the work, looking to see if either paddle is pressed. If the left paddle is down

we do a dit, and if the right paddle is down we do a dah. For this to work we must periodically

check the paddle inputs. We can’t check it all the time, since our DDS needs to look for other

input, too. But we can put a call to CheckKey in our main program loop, ensuring the paddles

are checked many, many times a second.

4 Adding an Iambic Keyer

I got this far and was very pleased with the results. I got dits from the left paddle, and dahs from

the right paddle. But a minute later when I tried a CQ, I realized what’s missing: there isn’t any

iambic action. Squeezing both keys together just gives you dits, courtesy of the first SBIS ‘Is

the left paddle down?’ instruction. I’ve used iambic ever since I built my Heathkit HD-1410

keyer in the 70’s. If you favor your single-paddle or cootie key you can stop here, but I needed

more! First, we need to be able to detect the squeeze, when both paddles are pressed. I

modified my PaddleDown routines to check for the opposite paddle, using SBIS, and then

branch to a new Iambic routine if the other paddle was also pressed:

LPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 sbis PinC,RPaddle ;are both paddles pressed?

 rjmp Iambic ;yes, so iambic mode

 rcall Dit ;no, so just send a dit

 ret

RPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 sbis PinC,LPaddle ;are both paddles pressed?

 rjmp Iambic ;yes, so iambic mode

 rcall Dah ;no, so just send a dah

 ret

IAMBIC:

; Come here if both paddles are pressed

; Now what do I do???

Iambic Mode

What is supposed to happen when both paddles are squeezed together? The keyer is

supposed to go ‘di-dah, di-dah, di-dah’, in iambic rhythm, alternating dits and dahs until you let

go. But it is a little more complicated and technically true only if you pressed the dit-paddle first.

If you pressed the dah paddle first, then the squeeze would give you dah-di, dah-di, dah-dit

instead. (For you poetry scholars this not iambic, but trochaic rhythm.)

To get an iambic/trochaic rhythm, we need to know what the previous element was, and then

send the other element. If the last thing sent was a dah, we now send a dit, and vice versa. To

remember the previous state means that we’ll need to store that information in a register or

memory byte somewhere. I chose to use a single bit of the flag byte I used in my last project.

You can store it somewhere else if you want. Every time we send an element, dit or dah, we

store what it is that we sent. Then, when both keys are down, we look at what was sent last and

send the other element. Here is the revised code:

IAMBIC:

; Come here if both paddles are pressed

 sbrc temp2,DahFlag ;was the last element a Dah?

 rjmp Dit ;yes, so do a dit now

 rjmp Dah ;no, so do a dah now

5 Adding an Iambic Keyer

DIT:

 rcall KeyDown

 rcall DitWait ;key down for 1 dit

 rcall KeyUp

 rcall DitWait ;key up for 1 dit

 cbr temp2,1<<DahFlag ;remember dit sent

 ret

DAH:

 rcall KeyDown

 rcall DahWait ;key down for 1 dah

 rcall KeyUp

 rcall DitWait ;key up for 1 dit

 sbr temp2,1<<DahFlag ;remember dah sent

 ret

I am using the second-lowest bit in temp2 to keep track of dits and dahs. When a dit is sent I

clear this bit with the CBR instruction. When a dah is sent I set the bit with SBR. Now when we

get to the Iambic routine we can decide what to do: just check the bit and do the opposite of

what was done before. This is called Iambic Mode A, which is what I learned and am used to.

A good discussion of Mode A and Mode B can be found at the Jackson Harbor website or at

http://wb9kzy.com/modeab.pdf. To code for Mode B you’ll need to add an extra element at the

completion of the squeeze.

What’s Missing

This keyer works great for me, but it took a little practice before I stopped dropping elements.

Why? Because this keyer does not have ‘dit-memory’, like almost all keyers do. You can tell

the difference if you send a Q: dah-dah-di-dah. With dit-memory you can squeeze-send your

dit anytime during the second dah - way before the dit is expected - and it will be sent at the

correct time. But with this keyer you must have the paddles squeezed when the second dah

has completed and the dit is expected. If not, the dit gets dropped. To add dit-memory you’ll

need to record paddle-presses within an element, and this probably means tying the input lines

to interrupts. Let me know if you do!

Also, most keyers will let you change the weighting, or duration, of the elements. I haven’t

bothered yet, but dividing the element time by 2 will let you change the length of each element

in increments of half-a-dit. Dividing by four would give you quarter-dit resolution.

It would be nice to change the code speed without recompiling. You can add a code speed

setting in EEPROM, and then let the user change it by turning the encoder knob. See my

EEPROM article at http://w8bh.net/avr/EEPROM.pdf for code on how you can save data.

http://wb9kzy.com/modeab.pdf
http://w8bh.net/avr/EEPROM.pdf

6 Adding an Iambic Keyer

Finally, I still intend to add memory functions to this keyer, so that I can automate my CQ’s and

other messages. Stay tuned.

Full Code

The entire keyer program takes only 50 instructions, more or less. Amazing!

This code is taken directly from my system, and may include or assume code that I’ve written for

one or more of my preceding projects. I’ve commented out a lot of the initialization section that

applies only to previous projects. Remove the first-column semicolons on these code lines if

you are using my previous code.

For the VFO to work correctly you should uncomment the calls to CheckEncoder and

CheckButton in the new main program loop, and use the code from my VFO memory project at

http://w8bh.net/avr/AddMemories.pdf.

Alternatively, if you just want this keyer code and nothing else, copy the new initialization code

into the original source code and put a call to CheckKey in the original main program loop.

; Before compiling, manually make the following changes to the source code:

; Just below the label "Menu: ;main program", add this line

; rjmp W8BH ; new main program loop

; In dseg, add a single byte variable called flags.

;***

;* W8BH - INITIALIZATION CODE

;***

W8BH:

; PORT B SETUP

 ldi temp1,$03 ;binary 0000.0011

 out DDRB,temp1 ;set PB0,1 as output

 ldi temp1,$3C ;binary 0011.1100

 out PORTB,temp1 ;set pullups on PB2-5

; PORT C SETUP

 ldi temp1,$0F ;binary 0000.1111

 out DDRC,temp1 ;set PC0-PC3 as outputs

 ldi temp1,$38 ;binary 0011.1000

 out PORTC,temp1 ;set pullups on PC4-5 & LED off

; PORT D SETUP

 ldi temp1,$E3 ;b1110.0011 (add bits 6&7)

 out DDRD,temp1 ;set PD0,1,5,6,7 outputs

; VARIABLES

 clr temp1

; sts mode,temp1 ;start mode0 = normal operation

 sts flags,temp1 ;nothing to flag yet

; sts preset,temp1 ;start with first preset

http://w8bh.net/avr/AddMemories.pdf

7 Adding an Iambic Keyer

; sts speed,temp1 ;start with default code speed

; clr release ;no button events on startup

; clr hold ;no holds on startup

; COUNTERS/TIMERS

; ldi temp1, $07 ;set timer2 prescale divider to 1024

; sts TCCR2B,temp1

; ldi temp1, $01 ;enable TIMER2 overflow interrupt

; sts TIMSK2,temp1

; MISC STARTUP CODE

; rcall CheckEE ;make sure EEPROM is initialized

; ldi temp1,1

; rcall DisplayLine1 ;startup message

;***

;* W8BH - REVISED MAIN PROGRAM LOOP

;***

MAIN:

; rcall CheckEncoder ;check for encoder action

; rcall CheckButton ;check for button events

; rcall CheckHold ;check for button holds

 rcall CheckKey ;check for paddle action

; rcall Keypad ;check for keypad action

 rjmp Main ;loop forever

;***

;* W8BH - Iambic Keyer routines

;***

;

; Left paddle (dit) = Port C, bit 5

; Right paddle (dah) = Port C, bit 4

; Keyer output line = Port D, bit 6

.equ LPaddle = PC5

.equ RPaddle = PC4

.equ DahFlag = 1 ;0=dit, 1=dah

.equ KeyOut = PD6

CHECKKEY:

; Checks to see if either of the paddles have been pressed.

; Paddle inputs are active low

 lds temp2,flags ;get flags in register

 sbis PinC,LPaddle ;dit (left) paddle pressed?

 rcall LPaddleDown ;yes, so do it

 sbis PinC,RPaddle ;dah (right) paddle pressed?

 rcall RPaddleDown ;yes, so do it

 sts flags,temp2 ;save flags

 ret

LPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 sbis PinC,RPaddle ;are both paddles pressed?

 rjmp Iambic ;yes, so iambic mode

 rcall Dit ;no, so just send a dit

 ret

8 Adding an Iambic Keyer

RPADDLEDOWN:

; Come here is the left (dit) paddle is pressed

 sbis PinC,LPaddle ;are both paddles pressed?

 rjmp Iambic ;yes, so iambic mode

 rcall Dah ;no, so just send a dah

 ret

IAMBIC:

; Come here if both paddles are pressed

 sbrc temp2,DahFlag ;was the last element a Dah?

 rjmp Dit ;yes, so do a dit now

 rjmp Dah ;no, so do a dah now

DIT:

 rcall KeyDown

 rcall DitWait ;key down for 1 dit

 rcall KeyUp

 rcall DitWait ;key up for 1 dit

 cbr temp2,1<<DahFlag ;remember dit sent

 ret

DAH:

 rcall KeyDown

 rcall DahWait ;key down for 1 dah

 rcall KeyUp

 rcall DitWait ;key up for 1 dit

 sbr temp2,1<<DahFlag ;remember dah sent

 ret

KEYDOWN:

 cbi PortD,KeyOut ;turn on output line

 cbi PortC,LED ;turn on LED

 ret

KEYUP:

 sbi PortD,KeyOut ;turn off output line

 sbi PortC,LED ;turn off LED

 ret

GETDELAY:

 ldi delay, 120 ;set speed at 10 WPM

 ret

DITWAIT:

 rcall GetDelay ;get # of milliseconds for dit

 rcall wait ;and wait that long

 ret

DAHWAIT: ;wait for 3 dits

 rcall DitWait

 rcall DitWait

 rcall DitWait

 ret

;***

;* W8BH - END OF INSERTED CODE

;***

