

Building a

Smart-Necklace

 by

Bruce E. Hall, W8BH

1) INTRODUCTION

Nuts & Volts magazine is a great rag for the electronic hobbyist. In the July 2013 issue there
is an article “Make a Smart Necklace” by Craig Lindley. He piggybacks an LED matrix
module directly on an AVR microcontroller, creating various animated displays. Craig’s work
was based on previous work by Alex Weber and tigeruppp. I immediately thought that such a
necklace would be a fun gift for my 9 year-old daughter. All it takes is $5 in parts, basic
soldering skills, and a whole lot of programming! If you are interested, read on.

2) HOW TO START

The centerpiece of this project is the ATtiny4313 microcontroller by Atmel, but you can also
use the cheaper and more widely available ATtiny2313. You also need an LED matrix, the
LiteOn LTP-757. It is possible to use other models, but modules with different pinouts will
require changes to the microcontroller code.

Next, you need a way to program the microcontroller. I have the AVRISP II, which costs
about $37 from Digikey (or eBay). This unit connects to your computer via USB, and
connects to the microcontroller via a 6pin female header. I use a breadboard to make all of
the connections. A $1 ISP-breakout board from Sparkfun, shown below, lets you breadboard
the output of the AVRISP programmer. Add an optional $3 28-pin ZIF socket for your atmel
chip, and make the following connections:

AVR ISP ATtiny4313

Gnd Gnd (pin 10)

5V Vcc (pin 20)

MISO Miso (pin 18)

SCK Sck (pin 19)

RESET Reset (pin 1)

MOSI Mosi (pin 17)

http://www.nutsvolts.com/
http://www.nutsvolts.com/index.php?/magazine/article/july2013_Lindley
http://tinkerlog.com/howto/64pixels
https://sites.google.com/site/tinymatrix

You’ll need to supply +5V power between pin 20 (Vcc) and pin 10 (ground). Download AVR
studio from the atmel.com, and plug in the AVRISP programmer into a USB port on your
computer. If all goes well, you should see two green lights on the programmer. The LED
inside the programmer indicates USB power & data transfer; the LED on the case indicates
status. If the status light is green, your 6 pin ISP cable is powered and connected correctly.
Red indicates lack of +5V power. Orange indicates that the ISP connections are reversed.

When you have your green lights, it’s time to talk to the microcontroller! Start AVR studio,
choose ‘Device Programming’ from the Tools menu, or press Ctrl-Shift-P. Choose AVRISP II
as the Tool, ATtiny4313 as the Device, and ISP as the Interface. Click Apply. Now click on
the Device Signature Read button. A result of ‘0x1E920D’ indicates successful 2-way
communication with your microcontroller.

From this device programming window you can also set the microcontroller’s fuses. Click on
‘Fuses’ in the left-hand pane. All the fuses except ‘SPIEN’ should be unchecked. (You will
need to uncheck the CKDIV8 fuse.) Also, the SUT_CKSEL fuse should be set to
INTRCOSC_4MHZ_14CK_65MS. This will run the chip at 4 MHz, using the internal RC
oscillator. After checking your values, click the program button. You need to program the
fuses only once.

3) CODING

For this project I chose ‘C’ as my programming language. For me, C is a bit easier to use
than assembly language. More importantly, the authors mentioned above also used C for
their projects. The complete source code for my project is given at the end of this article.
Like many microcontroller projects, the outer shell of the program is very simple:

int main (void)

{

 init();

 main_loop();

 return(0)

 }

First, init() is called for do-once, initialization steps. Next, main_loop is called to create
interesting displays on the LED matrix. This loop is typically set up as an infinite loop, so that
the program never ends.

The first initialization job is to set up microcontroller pins as inputs or outputs. We need only
outputs for this project. To set a pin as an output, we write a ‘1’ to the ports data direction
register. DDRA is the data direction register for port A. Look at the first three lines:

 DDRA = 0x03; // 0000.0011

 DDRB = 0x7E; // 0111.1110

 DDRD = 0x1E; // 0001.1110

In Port A, we use the lowest two lines (A0 and A1), so the corresponding bits are set to logic
1:

A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 0 1 1

The binary number is 00000011, or hexadecimal 0x03. The code to set these pins A1 and A0
as outputs is: DDRA = 0x03. We need a total of 12 output lines. Looking at the comments
for the three lines of code above, you will see exactly 12 bits set to logic one: two in port A, 6
in port B, and 4 in port D. Count ‘em.

The next four lines set up a counter for our interrupt routine. First, let’s assume that we need
our code to be interrupted about 390 times a second (we do). The controller contains two
separate counters that can be used for this purpose, timer/counter 0 and timer/counter 1.
The first line sets the counter into ‘Clear Timer on Compare ‘CTC’ mode, which means that
the timer will count up to a value specified by the OCR0A, and then reset to zero.

TCCR0A = _BV(WGM01); // Set CTC mode

 TCCR0B = _BV(CS02); // Set prescaler clk/256 = 15625 Hz

 OCR0A = 40; // 15625/40 = 390 interrupts/sec (5 cols = ~78fps)

 TIMSK = _BV(OCIE0A); // Enable T/C 0A interrupt

The speed at which it counts is set by the second line. This command sets the speed equal
to the master clock divided by 256. In our case, that frequency is 4 MHz/256 = 15625 Hz.
The third line specifies that the timer will reset after 40 counts, meaning that it will be resetting
itself at a speed of 15625 Hz/ 40 = 390 times per second. The fourth and final line of code
forces the microcontroller to be interrupted every time the counter resets.

But why do we need to interrupt our code? To do what? And why do we need to do it so
often? We interrupt our code to multiplex the LED display. And we need to do it faster than
1/30 of a second, to take advantage of the ‘persistence of vision’ phenomenon.

3) MULTIPLEXING

Our display contains 35 individual LEDs, each with two connecting wires, and yet the entire
module has only 12 pins. How can so many LEDs be controlled by only 12 pins? The
answer is that the LEDs are connected in a matrix of 5 columns of 7 rows each. The two
usual methods of creating this matrix are shown below.

The left schematic shows the common-row anode configuration (used by our LTP-757
matrix). Notice that in the highlighted bar, Row 1 is electrically connected to 5 LED anodes.
The right schematic shows the common-row cathode configuration, in which each row pin is
connected to 5 LED cathodes.

To turn on a LED at position (row1, col1) we apply an electrical current between pin 12 (row1)
and pin 1 (col1). To turn the LED at (2,2) we apply a current between Row2 and Col2. But
what if we want to turn on both of these LEDs at the same time? Because the LEDs share
electrical connections in the matrix, activating rows 1-2 and cols 1-2 will turn on 4 LEDs rather
than just the two we wanted. Our matrix reduces the number of electrical connections (and
lets us use smaller microcontrollers), but restricts the combinations of LEDs that can
simultaneously be lit.

To display arbitrary patterns, like alphanumeric digits, we use a technique called multiplexing.
Starting with a blank display, each column is activated in turn. If the columns are sequenced
fast enough, our eyes interpret the columns as being simultaneously lit. Problem solved!
With a multiplexed display, we significantly reduce the number of electrical connections to the
microcontroller.

3) THE INTERRUPT SERVICE ROUTINE

The ISR is responsible for handling our matrix multiplexing. It is called 390 times per second,
regardless of whatever code the microcontroller is currently processing. The pseudo-code for
the ISR is this:

1. Turn off LEDs in the previous column

2. Enable selected row bits for next column
3. Turn on the new column & return control

After five calls to the ISR, all five columns have been sequentially displayed. The display is

therefore ‘refreshed’ at a rate of 390/5 = 78 Hz, ensuring our eyes see a flicker-free display. Let’s

look at each of the three steps in the pseudo-code and see how they are accomplished.

First, turn off LEDs in the previous column. If only one column is displayed at a time, this is the

same as turning off all the columns.

Look at the ports, and see which bits are connected to columns. Here are all the bits for each

port, and their connections. R0 stands for Row 0, C1 for Column 1, etc:

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
PORTA - - - - - - R2 C1
PORTB - R0 R1 C2 R3 C4 C3 -
PORTD - - - R6 R5 R4 C0 -

Remember that on this matrix the columns are cathodes, so they are activated with logic 0 and

deactivated with logic 1. To turn off the LEDs, we must take all of the columns to a logic 1 state.

Here is the same table, replacing all columns with logic 1 and everything else with logic 0:

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
PORTA 0 0 0 0 0 0 0 1
PORTB 0 0 0 1 0 1 1 0
PORTD 0 0 0 0 0 0 1 0

Now assign these values to each port. For example, Port B = binary 00010110 = 0x16.

 // turn off all LEDS, by taking cathode (column) pins high

 PORTA = 0x01;

 PORTB = 0x16;

 PORTD = 0x02;

The next task is to enable the row bits. I do these one at a time, looking at the desired pattern

and setting the corresponding port bit with a logical OR instruction. Here is the code for the first

row bit. After putting the desired row pattern into variable i:

 if (i & _BV(0)) PORTB |= _BV(6);

The first part (I & _BV(0) is true if row0 needs to be activated. The second part activates row0 by

setting bit 6 of PORTB, while keeping the other bits of PORTB unchanged. In the table above

you’ll see that bit6 of PORTB is connected to row0. The macro “_BV()” creates a bit pattern with

the desired bit set. In this case _BV(6) equals binary 01000000, with bit6 a logic 1 and the

remaining bits logic 0.

After all the selected rows bits are enabled, the last task is the turn on the LEDs by activating the

column. According to the table above, to turn on column 0 we reset the value of PortD, bit 1. To

set this bit we’d use a logical OR instruction, like above. But our common-cathode display needs

this value to be zeroed. To reset a selected bit we use a logical AND with a zero at the bit

position:

PORTD &= ~_BV(1); // activate column 0, turning on LEDs

Here, tilde is the NOT operator, turning _BV(1) from 0b00000001 into 0b11111110.

After turning on the desired row bits and taking the desired column low, the selected LEDs in the

current column turn on. The display will remain this way for 2.56 mS, until the ISR is called again.

3) BUFFERED DISPLAY

Our ISR handles all the dirty work. It turns on the necessary port pins to drive our display and
makes sure the display is refreshed at an appropriate rate. The rest of the code simply
provides data to display. The data handoff happens in the display buffer, a global variable
that the main code and ISR can both access. A simple data buffer for our 5 column matrix is
an array of 5 bytes, each byte corresponding to a column in the display:

If we want to display the letter ‘T’ in our display,

we must load the 5-byte buffer with the

appropriate bits that will make the T symbol.

Look at the table. There are 8 bits in a byte, but

we need only 7 rows. So the top row is unused.

Byte 0 will need one bit (bit 6) set. Setting the first

byte to the value of 010000000 = 0x40 will give us

this pattern. Byte 1 will need the same value. In

Byte 2, the vertical bar of the T, the pattern is

01111111 = 0x7F. Bytes 3 & 4 finish the top of

the T with values 0x40.

So, to display the letter T, will fill our buffer with

the value (0x40, 0x40, 0x7F, 0x40, 0x40). An

upside-down T would be (0x01, 0x01, 0x7F, 0x01,

0x01).

Whew! Do we have to map the whole alphabet

onto a 5x7 matrix, and figure out the correct bits

for each letter? Yes, but it’s been done before;

you don’t have to reinvent the wheel. The source code includes 107 different symbols for you to

use. But if you know how the table is constructed, you can easily add your own symbols.

 byte
0

byte
1

byte
2

byte
3

byte
4

Bit7 - - - - -

Bit6

Bit5

Bit4

Bit3

Bit2

Bit1

Bit0

4) DISPLAYING A TEXT MESSAGE

With all the hard stuff out of the way, putting a text message on the display is very easy. For each

character in your message, copy its symbol into the display buffer, then wait about a second.

Repeat until the whole message is done.

void DisplaySymbol(int index)

// loads a font symbol into the display buffer

{

 for (int y = 0; y < COLS; y++)

 {

 buf[y] = pgm_read_byte(&(FONT_CHARS[index][y]));

 }

}

void DisplayText(const char *text)

// displays given text, one character at a time

{

 for (int i=0; i<strlen(text); i++)

 {

 DisplaySymbol(text[i]-' '); // display char

 DelaySecond(); // wait a while

 } // repeat for all chars

}

5) SCROLLING A TEXT MESSAGE

It’s confession time: I have no idea how one is supposed to implement a text scroll function.
So what follows may be the worst text scrolling routine ever made. But I made it for a recent
raspberry pi project, and it works.

To scroll you need two pieces of data: the data that is currently being displayed and the data
that is about to be displayed. This means we will keep track of (= buffer) data for two
characters instead of one. To scroll, we shift our current display one column to the left,
moving data from the invisible to the visible portion of the buffer by the same amount. English
is written left-to-right, so leftward scrolling works the best.

Let’s try an example, the word ‘Pi’:

Here is our 10 byte buffer: the five blue columns
represent what is being displayed on the LED matrix.
The five green columns represent the buffer data waiting
to be displayed.

The ‘P’ is being displayed, and the ‘I’ waiting its turn. If we scroll to the left by one column,
the leftmost blue column disappears. Although only the ‘P’ is visible, both characters have
shifted slightly to the left. To do this in code, each buffer column gets the contents of the
column to its right, or buf[i] = buf[i+1]:

X X X X X X X

X X X

X X X

X X X X X

X X

X X

X X X X

void ShiftLeft()

// shifts the buffer one column to the left

{

 for (int i=0; i<10; i++)

 {

 buf[i] = buf[i+1];

}

}

Look at the next scroll. The leading part of the ‘i’ is now appearing on the display. But wait a

second – what if we were doing a longer word, like ‘pie’. We need to add the ‘e’, don’t we?

There is too much space behind the ‘i’ already.

Don’t worry. Remember that the green box is just a
buffer, and isn’t being displayed. We’ll fill it with a new
character as soon as the previous character has been
completely shifted ‘into the blue’.

It is time to complete the scroll routine. Scrolling a complete character is just shifting the

character (and the initially-invisible next character) five times.

void Scroll()

// scrolls a character onto the display

{

 for (int i=0; i<COLS+1; i++)

 {

 ShiftLeft(); // shift display 1 column to left

 DelayCS(SCROLLDELAY); // and wait a while

 } // repeat 5x for whole character

}

void ScrollText(const char *text)

// scrolls given text across matrix, right to left

{

 for (int i=0; i<strlen(text); i++)

 {

 LoadSymbol(text[i]-' ') // get char into invis portion of buffer

 Scroll(); // and scroll it to be visible

 } // repeat for all chars

}

Now we have all the parts we need to scroll. Start with a blank display, and load the first
character into the nonvisible (green) portion of the buffer. Scroll one column at a time, and
display the data. Every 5

th
 scroll, load a new character into the buffer. Done!

X X X X X X

 X X

 X X

X X X X

 X

 X

 X X X

X X X X X

 X X

 X X

X X X

 X

 X

 X X X

5) SLEEP

A fresh CR2032 coin battery will keep this necklace running for weeks, especially if you do not run

the display often. The display uses far more current than the microcontroller. But a running

microcontroller draws about 0.4 mA constantly. Over time it will drain the battery. To conserve

battery power, you could remove the battery after each use.

I know that my daughter is unlikely to remove the battery, so I decided to use the ‘sleep’ function

instead. Sleeping reduces power consumption to 3 uA, a 100-fold improvement. You get an

additional 10-fold reduction in power (0.3 uA) by disabling the watchdog timer.

Implementing this deep sleep requires very few instructions. Here is the initialization code:

 MCUCR = 0x30; // 0011.0000 (sleep enabled, power-down mode)

 WDTCR = 0x18; // 0001.1000 set WD turn-off and WD enable bits
 WDTCR = 0x10; // 0001.0000 quickly reset WD enable to complete WD turnoff.

These lines turn on the necessary bits of the MCUCR and WDTCR registers. You may use

macros in <sleep.h> and <wdt.h> that perform the same function, if you prefer.

When you are ready to put the chip to sleep, just call ‘sleep()’. The sleep command will power-

down the microcontroller until it is reset.

6) PROTOTYPING

My breadboard setup is pictured below. A +3.3/5 V power supply (not shown) powers the bus

strips along the top and left side of the breadboard. I use a ZIF socket for my atmel chip, making

it very easy to insert/program/remove the chip without disturbing the circuit. Notice that I have

wired the LED matrix to the microcontroller without removing any of the programming circuitry.

That is the beauty of in-circuit programming!

Here are the physical pin connections between the microcontroller & matrix:

The wires run parallel to each other

without crossing. This pin mapping

allows us the piggyback the LED matrix

on top of the microcontroller.

Atmel (l) Matrix (l) Atmel (r) Matrix (r)

Pin 3 Pin 1 18 12

4 2 17 11

5 3 16 10

6 4 15 9

7 5 14 8

8 6 13 7

7) BURN, BURN, BURN

Compile your project in AVR studio. Then, under the Tools menu, select ‘Device Programming’.

Tool (AVRISP), Device (ATtiny4313) and Interface (ISP) should already be selected. Click Apply,

then Memories. In the section called Flash, check the filename to make sure it corresponds to

your just-compile file. Then click Program to flash your chip. After the programming is complete,

the chip will reset and your code will run. There is no need to remove or manually reset the chip.

Make sure that your code works the way you want, because reprogramming the chip your project

is assembled will be considerably more difficult!

 8) CONSTRUCTION

Remove the microcontroller and LED matrix from your prototyping circuit. Examine the pins on

each carefully noting which is pin 1. On the atmel chip, pin 1 is at the notched end, and there is

small dot in the case adjacent to it. On the matrix, the lettered edge is pins 6-12. If you hold the

+5V Power

ISP header & adapter
ZIF socket

LED Matrix

matrix from the top between your thumb and forefinger, and your forefinger covers the lettered

edge (pins 6-12), your thumb will point to pin1.

Now put the LED matrix on top of the atmel chip, centering it so that pin 1 of the matrix is on top of

pin 3 of the microcontroller. Each matrix pin should line up on top of a microcontroller pin, leaving

two uncovered rows of microcontroller pins on top, and two rows on the bottom:

Solder one of the aligned sets of pins, and

nudge the chips/pins so that the remaining sets are aligned. Now solder the remaining 11 sets of

pins. Your circuit is now 90% complete. Insert the microcontroller/matrix combo back into the ZIF

socket, and verify that the circuit works. In fact, you can still reprogram it! When you are satisfied

everything works, remove the combo and continue construction.

I added a small reset switch to my project,

so that the wearer can easily restart the

display. I soldered one end of the

pushbutton to the reset line, conveniently

located on pin 1 at the top of the chip. The

other end I connected to the battery (-) lead.

The two wires from the battery form the

necklace chain. Connect the wire from the

(+) battery lead to pin 20. Connect the (-)

lead to the reset switch and pin 10.

I fed both wires through a small piece of heat shrink tubing for strain relief. You should mount

your circuit on a pendant; otherwise the display won’t stay face up when worn. I used a small

piece of acrylic, cut out a 12mm x 17mm rectangular hole for the LED, then filed the hole until the

LED fit snugly. I used Weld-On acrylic glue to secure the LED, but epoxy resin should also work.

Finally, consider using a coat of hot glue over the exposed pins – the edges are sharp. Enjoy!

In Part 2 of this series we will create a toolbox full of simple animations.

Pin 1

(+) lead to pin 20

(-) lead to

pin 10

Align pins

 Solder

http://w8bh.net/avr/Necklace2.pdf

9) SOURCE CODE:

//---

// BMATRIX: NECKLACE with LED-MATRIX that displays text messages

//

// Based on Nuts&Volts Jul 2013 article: "Smart Necklace", p. 40

//

// Author : Bruce E. Hall bhall66@gmail.com

// Website : http://w8bh.net

// Version : 1.0

// Date : 27 Jul 2013

// Target : ATTINY4313 or ATTINY2313 microcontroller

// Language : C, using AVR studio 6

//

// ---

//

// Uses LITE-ON LTP-757G 5x7 LED MATRIX (Column Cathode) Display

//

// LED to ATTINY4313 b PORTA PORTB PORTD

// ---------------------------------- ------------------------

// LED FUNCTION to PORT (PIN) 7 - - -

// ---------------------------------- 6 - row0 -

// Col 0 - PD1 // Row 0 - PB6 5 - row1 -

// Col 1 - PA0 // Row 1 - PB5 4 - col2 row6

// Col 2 - PB4 // Row 2 - PA1 3 - row3 row5

// Col 3 - PB1 // Row 3 - PB3 2 - col4 row4

// Col 4 - PB2 // Row 4 - PD2 1 row2 col3 col0

// // Row 5 - PD3 0 col1 - -

// // Row 6 - PD4

//

// Since this a column cathode display,

// Columns are active LOW; to set a col, PORTx &= ~(1<<bit)

// Rows are active HIGH; to set a row, PORTx ~= (1<<bit)

//

// Fuse settings: 4 MHz osc with 65 ms Delay, SPI enable; *NO* clock/8

// ---

// DEFINES

#define F_CPU 4000000L // run CPU at 4 MHz

#define ROWS 7 // LED matrix has 7 rows, 5 columns

#define COLS 5

#define SCROLLDELAY 15 // delay in cs between column shifts

#define FLASHDELAY 17 // delay in cs between symbol flashes

#define BEATDELAY 30 // delay in cs between heartbeats

#define HEARTCHAR 99

#define TEXT1 "I Love You! "

#define TEXT2 "Ich Liebe Dich! "

// ---

// INCLUDES

#include <avr/io.h> // deal with port registers

#include <avr/interrupt.h> // deal with interrupt calls

#include <avr/pgmspace.h> // put character data into progmem

#include <util/delay.h> // used for _delay_ms function

#include <string.h> // string manipulation routines

#include <avr/sleep.h> // used for sleep functions

// ---

// GLOBAL VARIABLES

char buf[12]; // display buffer; each byte = 1 column

mailto:bhall66@gmail.com
http://w8bh.net/

 // buf[0] is the left-most column (col0)

 // buf[4] is the right-most column (col4)

 // buf[5] is a blank column between chars

 // buf[6]..buf[10] are scrolled onto display

int curCol; // current column; values 0-4

const unsigned char FONT_CHARS[107][5] PROGMEM =

{

 { 0x00, 0x00, 0x00, 0x00, 0x00 }, // (space)

 { 0x00, 0x00, 0x5F, 0x00, 0x00 }, // !

 { 0x00, 0x07, 0x00, 0x07, 0x00 }, // "

 { 0x14, 0x7F, 0x14, 0x7F, 0x14 }, // #

 { 0x24, 0x2A, 0x7F, 0x2A, 0x12 }, // $

 { 0x23, 0x13, 0x08, 0x64, 0x62 }, // %

 { 0x36, 0x49, 0x55, 0x22, 0x50 }, // &

 { 0x00, 0x05, 0x03, 0x00, 0x00 }, // '

 { 0x00, 0x1C, 0x22, 0x41, 0x00 }, // (

 { 0x00, 0x41, 0x22, 0x1C, 0x00 }, //)

 { 0x08, 0x2A, 0x1C, 0x2A, 0x08 }, // *

 { 0x08, 0x08, 0x3E, 0x08, 0x08 }, // +

 { 0x00, 0x50, 0x30, 0x00, 0x00 }, // ,

 { 0x08, 0x08, 0x08, 0x08, 0x08 }, // -

 { 0x00, 0x60, 0x60, 0x00, 0x00 }, // .

 { 0x20, 0x10, 0x08, 0x04, 0x02 }, // /

 { 0x3E, 0x51, 0x49, 0x45, 0x3E }, // 0

 { 0x00, 0x42, 0x7F, 0x40, 0x00 }, // 1

 { 0x42, 0x61, 0x51, 0x49, 0x46 }, // 2

 { 0x21, 0x41, 0x45, 0x4B, 0x31 }, // 3

 { 0x18, 0x14, 0x12, 0x7F, 0x10 }, // 4

 { 0x27, 0x45, 0x45, 0x45, 0x39 }, // 5

 { 0x3C, 0x4A, 0x49, 0x49, 0x30 }, // 6

 { 0x01, 0x71, 0x09, 0x05, 0x03 }, // 7

 { 0x36, 0x49, 0x49, 0x49, 0x36 }, // 8

 { 0x06, 0x49, 0x49, 0x29, 0x1E }, // 9

 { 0x00, 0x36, 0x36, 0x00, 0x00 }, // :

 { 0x00, 0x56, 0x36, 0x00, 0x00 }, // ;

 { 0x00, 0x08, 0x14, 0x22, 0x41 }, // <

 { 0x14, 0x14, 0x14, 0x14, 0x14 }, // =

 { 0x41, 0x22, 0x14, 0x08, 0x00 }, // >

 { 0x02, 0x01, 0x51, 0x09, 0x06 }, // ?

 { 0x32, 0x49, 0x79, 0x41, 0x3E }, // @

 { 0x7E, 0x11, 0x11, 0x11, 0x7E }, // A

 { 0x7F, 0x49, 0x49, 0x49, 0x36 }, // B

 { 0x3E, 0x41, 0x41, 0x41, 0x22 }, // C

 { 0x7F, 0x41, 0x41, 0x22, 0x1C }, // D

 { 0x7F, 0x49, 0x49, 0x49, 0x41 }, // E

 { 0x7F, 0x09, 0x09, 0x01, 0x01 }, // F

 { 0x3E, 0x41, 0x41, 0x51, 0x32 }, // G

 { 0x7F, 0x08, 0x08, 0x08, 0x7F }, // H

 { 0x00, 0x41, 0x7F, 0x41, 0x00 }, // I

 { 0x20, 0x40, 0x41, 0x3F, 0x01 }, // J

 { 0x7F, 0x08, 0x14, 0x22, 0x41 }, // K

 { 0x7F, 0x40, 0x40, 0x40, 0x40 }, // L

 { 0x7F, 0x02, 0x04, 0x02, 0x7F }, // M

 { 0x7F, 0x04, 0x08, 0x10, 0x7F }, // N

 { 0x3E, 0x41, 0x41, 0x41, 0x3E }, // O

 { 0x7F, 0x09, 0x09, 0x09, 0x06 }, // P

 { 0x3E, 0x41, 0x51, 0x21, 0x5E }, // Q

 { 0x7F, 0x09, 0x19, 0x29, 0x46 }, // R

 { 0x46, 0x49, 0x49, 0x49, 0x31 }, // S

 { 0x01, 0x01, 0x7F, 0x01, 0x01 }, // T

 { 0x3F, 0x40, 0x40, 0x40, 0x3F }, // U

 { 0x1F, 0x20, 0x40, 0x20, 0x1F }, // V

 { 0x7F, 0x20, 0x18, 0x20, 0x7F }, // W

 { 0x63, 0x14, 0x08, 0x14, 0x63 }, // X

 { 0x03, 0x04, 0x78, 0x04, 0x03 }, // Y

 { 0x61, 0x51, 0x49, 0x45, 0x43 }, // Z

 { 0x00, 0x00, 0x7F, 0x41, 0x41 }, // [

 { 0x02, 0x04, 0x08, 0x10, 0x20 }, // "\"

 { 0x41, 0x41, 0x7F, 0x00, 0x00 }, //]

 { 0x04, 0x02, 0x01, 0x02, 0x04 }, // ^

 { 0x40, 0x40, 0x40, 0x40, 0x40 }, // _

 { 0x00, 0x01, 0x02, 0x04, 0x00 }, // `

 { 0x20, 0x54, 0x54, 0x54, 0x78 }, // a

 { 0x7F, 0x48, 0x44, 0x44, 0x38 }, // b

 { 0x38, 0x44, 0x44, 0x44, 0x20 }, // c

 { 0x38, 0x44, 0x44, 0x48, 0x7F }, // d

 { 0x38, 0x54, 0x54, 0x54, 0x18 }, // e

 { 0x08, 0x7E, 0x09, 0x01, 0x02 }, // f

 { 0x08, 0x14, 0x54, 0x54, 0x3C }, // g

 { 0x7F, 0x08, 0x04, 0x04, 0x78 }, // h

 { 0x00, 0x44, 0x7D, 0x40, 0x00 }, // i

 { 0x20, 0x40, 0x44, 0x3D, 0x00 }, // j

 { 0x00, 0x7F, 0x10, 0x28, 0x44 }, // k

 { 0x00, 0x41, 0x7F, 0x40, 0x00 }, // l

 { 0x7C, 0x04, 0x18, 0x04, 0x78 }, // m

 { 0x7C, 0x08, 0x04, 0x04, 0x78 }, // n

 { 0x38, 0x44, 0x44, 0x44, 0x38 }, // o

 { 0x7C, 0x14, 0x14, 0x14, 0x08 }, // p

 { 0x08, 0x14, 0x14, 0x18, 0x7C }, // q

 { 0x7C, 0x08, 0x04, 0x04, 0x08 }, // r

 { 0x48, 0x54, 0x54, 0x54, 0x20 }, // s

 { 0x04, 0x3F, 0x44, 0x40, 0x20 }, // t

 { 0x3C, 0x40, 0x40, 0x20, 0x7C }, // u

 { 0x1C, 0x20, 0x40, 0x20, 0x1C }, // v

 { 0x3C, 0x40, 0x30, 0x40, 0x3C }, // w

 { 0x44, 0x28, 0x10, 0x28, 0x44 }, // x

 { 0x0C, 0x50, 0x50, 0x50, 0x3C }, // y

 { 0x44, 0x64, 0x54, 0x4C, 0x44 }, // z

 { 0x00, 0x08, 0x36, 0x41, 0x00 }, // {

 { 0x00, 0x00, 0x7F, 0x00, 0x00 }, // |

 { 0x00, 0x41, 0x36, 0x08, 0x00 }, // }

 { 0x08, 0x08, 0x2A, 0x1C, 0x08 }, // ->

 { 0x08, 0x1C, 0x2A, 0x08, 0x08 }, // <-

 { 0xFF, 0x41, 0x5D, 0x41, 0xFF }, // 096: psycho 2

 { 0x00, 0x3E, 0x22, 0x3E, 0x00 }, // 097: psycho 1

 { 0x06, 0x15, 0x69, 0x15, 0x06 }, // 098: nuke

 { 0x0C, 0x1E, 0x3C, 0x1E, 0x0C }, // 099: solid heart

 { 0x0C, 0x12, 0x24, 0x12, 0x0C }, // 100: outline heart

 { 0x0A, 0x00, 0x55, 0x00, 0x0A }, // 101: flower

 { 0x08, 0x14, 0x2A, 0x14, 0x08 }, // 102: diamond

 { 0x07, 0x49, 0x71, 0x49, 0x07 }, // 103: cup

 { 0x22, 0x14, 0x6B, 0x14, 0x22 }, // 104: star2

 { 0x36, 0x36, 0x08, 0x36, 0x36 }, // 105: star3

 { 0x0F, 0x1A, 0x3E, 0x1A, 0x0F } // 106: fox

};

// ---

// INTERRUPT SERVICE ROUTINE

//

// Function: Light a column on the LED matrix display, according to contents

// of display buffer. buf[0] = leftmost column; buf[4] = rightmost

//

// This routine is called about 390 times per second, yielding a refresh

// rate for the whole display of 390/5 = 78 frames per second.

ISR (TIMER0_COMPA_vect)

{

 if (++curCol >= COLS) // advance column counter

 curCol = 0;

 // turn off all LEDS, by taking cathode (column) pins high

 PORTA = 0x01;

 PORTB = 0x16;

 PORTD = 0x02;

 // turn on individual row bits in this column

 char i = buf[curCol];

 if (i & _BV(0)) PORTB |= _BV(6);

 if (i & _BV(1)) PORTB |= _BV(5);

 if (i & _BV(2)) PORTA |= _BV(1);

 if (i & _BV(3)) PORTB |= _BV(3);

 if (i & _BV(4)) PORTD |= _BV(2);

 if (i & _BV(5)) PORTD |= _BV(3);

 if (i & _BV(6)) PORTD |= _BV(4);

 // turn selected column on

 switch(curCol)

 {

 case 0: PORTD &= ~_BV(1); break;

 case 1: PORTA &= ~_BV(0); break;

 case 2: PORTB &= ~_BV(4); break;

 case 3: PORTB &= ~_BV(1); break;

 case 4: PORTB &= ~_BV(2); break;

 }

}

// ---

// PROGRAM INITIALIZATION CODE

void init ()

{ // set output pins

 DDRA = 0x03; // 0000.0011

 DDRB = 0x7E; // 0111.1110

 DDRD = 0x1E; // 0001.1110

 // setup Timer/Counter0 for LED refresh

 TCCR0A = _BV(WGM01); // Set CTC mode

 TCCR0B = _BV(CS02); // Set prescaler clk/256 = 15625 Hz

 OCR0A = 40; // 15625/40 = 390 interrupts/sec (5 cols = ~78fps)

 TIMSK = _BV(OCIE0A); // Enable T/C 0A interrupt

 MCUCR = 0x30; // 0011.0000 (sleep enabled, power down)

 WDTCR = 0x18; // 0001.1000 set WD turn-off and WD enable bits

 WDTCR = 0x10; // 0001.0000 reset WD enable to complete WD turnoff

 sei(); // enable global interrupts

}

void DelayCS(int cs)

// Delays CPU for specified time, in centiseconds (1/100 sec)

// Calling _delay_ms in a routine prevents inlining, reducing code size,

// at the expense of slight timing inaccuracies.

{

 for (int i=0; i<cs; i++)

 _delay_ms(10);

}

void DelaySecond()

{

 DelayCS(100);

}

// ---

// CHARACTER SCROLLING ROUTINES

void ShiftLeft()

// shifts the entire display buffer one column to the left

{

 for (int i=0; i<11; i++)

 {

 buf[i] = buf[i+1]; // buf[0] on left; buf[11] on right

 } // each element represents a column

} // buf[0..4] are only elements visible

void Scroll()

// scrolls a character onto the display

{

 for (int i=0; i<COLS+1; i++)

 {

 ShiftLeft(); // shift display 1 column to left

 DelayCS(SCROLLDELAY); // and wait a while

 } // repeat 5x for whole character

}

void LoadSymbol(int index)

// loads a font symbol into the non-visible part of display buffer

{

 for (int y = 0; y < COLS; y++)

 {

 buf[y+5] = pgm_read_byte(&(FONT_CHARS[index][y]));

 }

 buf[11] = 0x00; // add character spacing

}

void MakeVisible()

// copies char from non-visible to visible part of buffer

{

 for (int i=0; i<COLS; i++)

 {

 buf[i] = buf[i+5];

 }

}

void DisplaySymbol(int index)

// loads a font symbol into the visible display buffer

{

 LoadSymbol(index);

 MakeVisible();

}

void ScrollText(const char *text)

// scrolls given text across matrix, right to left

{

 for (int i=0; i<strlen(text); i++)

 {

 LoadSymbol(text[i]-' ') // get char

 Scroll(); // and scroll it

 } // repeat for all chars

}

void DisplayText(const char *text)

// displays given text, one character at a time

{

 for (int i=0; i<strlen(text); i++)

 {

 DisplaySymbol(text[i]-' '); // display char

 DelaySecond(); // wait a while

 } // repeat for all chars

}

// ---

// ANIMATION ROUTINES

void FlashHeart()

{

 DisplaySymbol(HEARTCHAR); // flash heart on

 DelayCS(FLASHDELAY); // wait

 DisplaySymbol(0); // flash heart off

 DelayCS(FLASHDELAY); // wait

}

void HeartBeat()

{

 FlashHeart(); // heart on/off

 FlashHeart(); // heart on/off

 DelayCS(BEATDELAY); // wait

 FlashHeart(); // do it again!

 FlashHeart();

 DelayCS(BEATDELAY);

}

// ---

// MAIN PROGRAM LOOP

void main_loop ()

{

 while(1)

 {

 for (int i=100; i<107; i++)

 {

 DisplaySymbol(i); // display a fun symbol

 DelaySecond();

 DelaySecond();

 HeartBeat(); // heartbeats

 HeartBeat();

 DisplayText(TEXT1); // display text1

 DelaySecond();

 HeartBeat(); // more heartbeats

 ScrollText(TEXT2); // scroll text2

 DelaySecond();

 } // repeat 7 times

 sleep_cpu(); // turn off display

 }

}

// ---

// MAIN

int main (void)

{

 init(); // set up ports, CPU registers

 main_loop(); // do the display, then sleep

 return (0); // that's all, folks!

}

