

Build a GPS -c ontrolled

Clock

Bruce E. Hall, W8BH

Many of us have a fascination with time and time-keeping. Search the internet for clock projects
and you will find thousands of interesting articles! Iôve always wanted a clock for my ham radio
shack, using seven-segment LEDs. I wanted a clock that would simultaneously display local time
and coordinated universal time (UTC). One can buy or build two clocks and put them side by
side, but whatôs the fun in that? Here is an easy-to-build clock project that you can configure to
your own needs. Iôll show you, step by step, how to put the hardware and software together.

To keep things simple, I used breadboard-friendly hardware modules from one of my favorite
online stores, adafruit.com:

#2771 Feather 32u4 Basic (Atmega32u4 microcontroller) $20
#3028 DS3231 Precision RTC featherwing $14
#2940 Female Headers, #3002 Male Headers $2
#0878 Four Digit, 7-segment Red LED w/ I2C Backpack $9 each
#0747 Ultimate GPS Breakout v3 $40
#1606 Full-size PCB Breadboard $7

You will need a few other odds and ends: female/male headers, wire, solder, enclosure materials,
and a power source. The LED display can be whatever color you like. A full display needs 6 of
the display modules, but you can make a smaller display using 4, 3, 2, or even a single module.

A note about GPS modules: I like the Adafruit module, and keep a breadboard-ready unit for all of
my testing. Itôs rugged and dependable. For my working clock I am using a Ublox NEO-6m
module, about $10 on eBay. There are many GPS choices, and most will provide the time data
that this project needs. Older units send their data at 4800 rather than 9600 baud ï something to
check if the unit doesnôt seem to work.

http://w8bh.net/

STEP 1: ADDING A GPS MODULE

Start with the excellent tutorial on the microcontroller board, found at:

https://learn.adafruit.com/adafruit-feather-32u4-basic-proto. This tutorial explains how to install

Arduino on your computer and configure it for Adafruitôs AVR boards. Try the óblinkô sketch to

make sure everything is working. (Speaking of tutorials, there is also a tutorial at adafruit for

another version of a GPS-enabled clock. Check it out here: https://learn.adafruit.com/arduino-

clock)

Letôs add some hardware. Connect the GPS module to the micro according the table below:

Thatôs it: only 3 wires. If you are

breadboarding the modules, your setup

should look something like the photo on the

left.

The GPS module needs a clear view of the

sky to work well. Try to position yourself near a window if possible. The module is a receiver on

the 1.5 GHz band, listening for communications from GPS satellites orbiting the earth. Each

satellite transmits its location and timestamp. If at least four satellite signals are received, the

module can compute its own location with very good accuracy. In our application, we will ignore

the location data but use the timestamp.

Letôs write some software to test the serial connection. The GPS module transmits asynchronous

serial data on its ñTxò line at a rate of 9600 baud. (Some older modules use 4800, so you should

check the specs of your module if you are using different hardware.) Our microcontroller receives

this data on its ñRxò line. Here is a simple sketch to see the data:

#define SerialGPS Serial1 // use hardware UART on 32u4

void setup()
{
 SerialGPS.begin(9600); // GPS communication at 9600 baud
 Serial.begin(9600); // set serial output to 9600 baud
 while (!Seri al); // wait for serial output monitor
 Serial.println("Waiting for GPS data..."); // show something until GPS kicks in
}

void loop()
{
 if (SerialGPS.available()) // a character is ready to r ead...

32u4 microcontroller GPS module

3v3 Vin

GND GND

Rx Tx

https://learn.adafruit.com/adafruit-feather-32u4-basic-proto
https://learn.adafruit.com/arduino-clock
https://learn.adafruit.com/arduino-clock

 {
 char c = SerialGPS.read(); // so get it
 Serial.print(c); // and display it
 }
}

The first routine runs at the beginning of the sketch, initializing our serial connections. The second

routine, loop(), runs as a continuous loop after setup() as finished. Loop() waits for characters to

arrive on the serial input port, and echoes them one at a time on the output port. Simple! Run the

sketch, and open the Arduino serial output monitor. If everything is configured correctly, you will

see a flood of data from the GPS module. What does it all mean?

STEP 2: PARSING THE GPS DATA

The GPS data is in NMEA format. Each line of output corresponds to a NMEA sentence, and

each sentence contains multiple data elements separated by commas. Here is an example for

one type of NMEA sentence:

ñ$GPGGA,033757.000,3942.9046,N,08410.5099,W,2,8,1.05,311.0,M,-33.4,M,0000,0000*61ò

Name Data Description

Sentence Identifier $GPGGA Global Positioning System Fix Data

Time 033757 03:37:57 UTC = 11:37:57 PM EDT

Latitude 3942.9046,N 39d 42.9046ô N = 39.7151 N

Longitude 08410.5099,W 84d 10.5099 W = 84.1752 W

Fix : 0 Invalid, 1 GPS, 2 DGPS 2 Data is from a DGPS fix

Number of Satellites 8 8 Satellites are in view

Horizontal Dilution of Precision 1.05 Relative accuracy of horizontal position

Altitude 311.0, M 311 meters above mean sea level

Height above WGS84 ellipsoid -33.4, M -33.4 meters

Time since last DGPS update 0000 No last update

DGPS reference station id 0000 No station id

Checksum *61 Used to check for transmission errors

You can write your own parser to extract the data, but ready-made libraries are available and do

the job quite nicely. I chose Mikal Hartôs ñtinyGPSò, available at

https://github.com/mikalhart/TinyGPS. Letôs modify our code, using this library to extract the time

data. Except for addition of the library and a variable, the code starts the same:

#include <TinyGPS.h> // arduiniana.org/libraries/TinyGPS/
#define SerialGPS Serial1 // use hardware UART on 32u4
TinyGPS gps; // the GPS parser object

void setup()
{
 SerialGPS.begin(9600); // GPS communication at 9600 baud
 Serial.begin(9600); // set serial output to 9600 baud
 while (!Serial); // wait for serial output monitor
 Serial.println("Waiting f or GPS data..."); // show something until GPS kicks in
}

https://github.com/mikalhart/TinyGPS

In the loop() routine, weôll send each character to the library instead of serial.print(). The function
gps.encode() accepts each character, and returns true when the NMEA sentence is complete:

void loop()
{
 if (SerialGPS.available()) // if character is available
 {
 char c = SerialGPS.read(); // read the next character
 if (gps.encode(c)) // if input is complet e, use it
 printTime(); // to print the time
 }
}

The last thing to do is write a function for printing the time. The function gps.crack_datetime()
returns the time as hours, minutes, seconds, etc:

void printTime()
{
 byte hr,mn,sec;
 gps.crack_datetime(NULL,NULL,NULL, // get time info, ignore date
 &hr,&mn,&sec,NULL,NULL);
 Serial.print(hr); Serial.print(":"); // print out time (crudely!)
 Serial.print(mn); Serial.print(":");
 Serial.print(sec); Serial.println(" UTC");
}

Run the sketch. If your GPS has a satellite fix, you will see the time print about twice a second.

The time is reported in coordinated universal time, 5 hours ahead of Eastern Standard Time.

STEP 3: ADDING A DISPLAY

Once the GPS module is working, it is time to add a
display module. This module from adafruit
(https://www.adafruit.com/products/878) is a 4 digit
display with an I2C interface. Connect it to the feather
according to the table below:

The LED module is a 5V unit, but will work on 3.3 volts

with reduced brightness. I breadboarded mine

alongside the GPS module, shown here. Iôve moved

all of the power connections to a horizontal power bus

in the middle of the photo. The blue and white wires

at top right are the SDA and SCL lines, respectively.

32u4 microcontroller LED module

3v3 ñ+ò

GND ñ-ñ

SDA ñDòata

SCL ñCòlock

https://www.adafruit.com/products/878

The I2C backpack really simplifies the wiring: only two pins are required to drive all 33 LED
segments (4 digits x 8 segments/digité and a colon). On the software side, we will need to
transform numbers into segments. You can program this yourself, which I did for my for LED
interface project. But this project is all about simplicity, so Iôm using the Adafruit library instead.
Here is a quick sketch to test the setup:

#include <Wire.h>
#include <Adafruit_GF X.h> // needed for LEDBackpack library
#include "Adafruit_LEDBackpack.h" // supports 7 - segment LED Backpack

Adafruit_7segment d1 = Adafruit_7segment(); // d isplay object
int i = 0;

void setup()
{
 d1.be gin(0x7 0); // initialize display object w/ I2C addr
}

void loop()
{
 d1.print(i++,DEC); // send count to display, then increment
 d1.writeDisplay(); // show value on the LEDs
 delay(1000); // and wait a sec before repeating
}

Run the sketch, and the LED display will count upwards from 0. The #includes are necessary for

the backpack library. In setup(), specify the I2C address of the backpack module. This address is

0x70 by factory default. You can physically change the address in anything in the range 0x70 ï

0x77 by soldering 1 or more pads together on the backside of the module. Loop() shows the

incrementing value on the display. Change óDECô to óHEXô if youôd prefer counting in

hexadecimal!

STEP 4: DISPLAYING THE TIME

At this point, the GPS is connected, the display is connected, and we have code to control both.

The only item left is to merge the code. Check out the following sketch:

#include <Wire.h>
#include <Adafruit_GFX.h> // needed for LEDBackpack library
#include "Adafruit_LEDBackpack.h" // supports 7 - segment LED Backpack
#include <TinyGPS .h> // arduiniana.org/libraries/TinyGPS/
#define SerialGPS Serial1 // use hardware UART on 32u4

TinyGPS gps; // the GPS parser object
Adafruit_7segment d1 = Ada fruit_7segment(); // display object w/ I2C addr

void setup()
{
 d1.begin(0x71); // initialize display object
 SerialGPS.begin(9600); // GPS communication at 9600 baud
}

void loop()
{
 if (SerialGPS.available()) // if character is available

http://w8bh.net/avr/AvrSSD1.pdf
http://w8bh.net/avr/AvrSSD1.pdf
https://github.com/adafruit/Adafruit_LED_Backpack

 {
 char c = SerialGPS.read(); // read the next character
 if (gps.encode(c)) // if input is complete, use it
 printTi me(); // to print the time
 }
}

void printTime()
{
 byte hr,mn,sec;
 gps.crack_datetime(NULL,NULL,NULL, // get time info, ignore date
 &hr,&mn,&sec,NULL,NULL);
 int i= (hr*100) + mn; // convert hrs/mins to hhmm number
 d1.print(i,DEC); // send time value to displa
 d1.drawColon(sec % 2); // flash colon for seconds
 d1.writ eDisplay(); // show value on the LEDs
}

Remove all calls to the USB serial port, since the time will now display on LEDs. Setup() is otherwise

just a combination of the two code pieces. And loop() is entirely unchanged. In printTime(), I added

a line to turn the colon on and off. Using the modulus ñ%ò operator on the seconds value is a tricky

way of giving us a 0.5 Hz flash rate. Voilá, a working GPS clock!

I used this setup for a couple days, enjoying perfect timekeeping. But itôs not quite perfect. For

example, there are no leading zeros, so 00:05 UTC will confusingly display as ñ5ò. It takes a minute

or more to get a GPS fix when you turn on the power. And if you use this clock indoors, a GPS signal

may not be available. No GPS, no time (or even worse, wrong time)! To fix these issues, keep

reading.

STEP 5: REMOVING GPS DEPENDENCE

Temporarily remove the wire from the Tx pin of the GPS module, and notice that the time display

stops. Nothing happens in loop() if there isnôt a steady stream of meaningful GPS data. We must be

able to refresh the display without GPS. Start with the following modification:

#include <TimeLib.h> // github.com/PaulStoffregen/Time

pre vDisplay = 0; // when the display was last updated

void loop()
{
 while (SerialGPS.available()) // look for GPS data on serial port
 {
 int c=SerialGPS.read(); // get one cha racter at a time
 gps.encode(c); // and feed it to gps parser
 }
 if (now() != prevDisplay) // dont update display until time changes
 {
 prevDisplay = now(); // sav e current time
 printTime(); // display time
 }
}

This code uses the now() function of the time library, which returns the current unix time in seconds.

Loop continues to send GPS data to the parser, but display updates no longer depend on a steady

data stream. With this new code, printTime() will be called every second. One more change is

needed, since printTime() uses parsed GPS data internally. Letôs remove that, and get the time

information from the time library instead:

#include <TimeLib.h> // github.com/PaulStoffregen/Time
#include <Wire.h>
#include <Adafruit_GFX.h> // needed for LEDBackpack library
#include "Adafruit_LEDBackpack.h" // sup ports 7 - segment LED Backpack
#include <TinyGPS.h> // arduiniana.org/libraries/TinyGPS/
#define SerialGPS Serial1 // use hardware UART on 32u4

TinyGPS gps; // the GPS parser object
time_t prevDisplay = 0; // when the digital clock was displayed
Adafruit_7segment d1 = Adafruit_7segment(); // display object w/ I2C addr

void setup()
{
 d1.begin(0x71); // initialize display object
 SerialGPS.begin(9600); // GPS communication at 9600 baud
}

void loop()
{
 while (SerialGPS.available()) // look for GPS data on serial port
 {
 int c=SerialGPS.read(); // get one character at a time
 gps.encode(c); // and feed it to gps parser
 }
 if (now() != prevDisplay) // dont update display until time changes
 {
 prevDisplay = now() ; // save current time
 printTime(); // send time to USB serial port
 }
}

void printTime()
{
 int i = hour()*100 + minute(); // "11:32" converted to number "1132"
 d1.prin t(i,DEC); // send time value to display
 d1.drawColon(second() % 2); // flash colon for seconds
 d1.writeDisplay(); // show value on the LEDs
}

What happens? Time is displayed with or without GPS input, but time is never synchronized with GPS
either! When you apply power, time starts at 0 (00:00 on 1/1/1970). At first glance, this doesnôt seem
helpful at all. But all we need is a way to synchronize the time library with external sources.
Fortunately there is a way: the built-in routine setSyncProvider(). Call this routine with your external
time source, and the system time is periodically updated. The default update interval is once every 5
minutes. Try the following code:

#include <TimeLib.h> // github.com/PaulStoffregen/Time
#include <Wire.h>
#include <Adafruit_GFX.h> // needed for LEDBackpack library
#include "Adafruit_LEDBack pack.h" // supports 7 - segment LED Backpack
#include <TinyGPS.h> // arduiniana.org/libraries/TinyGPS/
#define SerialGPS Serial1 // use hardware UART on 32u4

TinyGPS gps; // the GPS parser object
time_t prevDisplay = 0; // when the digital clock was displayed
Adafruit_7segment d1 = Adafruit_7segment(); // display object w/ I2C addr

void setup()
{

 d1.begin(0x71); // initialize display object
 SerialGPS.begin(9600); // GPS communication at 9600 baud
 setSyncProvider(timeSync); // specify time setting routine
}

void loop()
{
 while (SerialGPS.available()) // look for GPS data on serial port
 {
 int c=SerialGPS.read(); // get one character at a time
 gps.encode(c); // and feed it to gps parser
 }
 if (n ow() != prevDisplay) // dont update display until time changes
 {
 prevDisplay = now(); // save current time
 printTime(); // send time to USB serial port
 }
}

voi d printTime()
{
 int i = hour()*100 + minute(); // "11:32" converted to number "1132"
 d1.print(i,DEC); // send time value to display
 d1.drawColon(second() % 2); // flash colon for seconds
 d1.writeDisplay(); // show value on the LEDs
}

time_t timeSync()
{
 tmElements_t tm;
 time_t t = 0;
 int yr;
 unsigned long fixAge;
 gps.crack_datetime(&yr, &tm.Month, &tm.Day, // get UTC time from GPS
 &tm.Hour, &tm.Minute, &tm.Second,
 NULL, &fixAge);
 if (fixAge<2000) // GPS has current data
 {
 tm.Year = yr - 1970; // convert calendar years to unix years
 t = makeTime(tm); // convert to time_t
 }
 return t; // return unix time
}

The code is getting a bit longer, but not too complicated. Look at the new timeSync() routine. It is
called once every 5 minutes to synchronize the time library with GPS data. gps.crack_datetime()
gives us all the time elements we need. If this data was collected within the last 2000 milliseconds, it
is used to update the system time. The routine makeTime() is used to convert the time elements into
unix time. MakeTime expects the year to be a unix year (0=1970, 1=1971, etc) instead of the calendar
year, so we must do a simple conversion before calling it.

Try running the sketch. After 5 minutes, if GPS has a fix, the time will be updated. Disconnect the
GPS for a while, and the clock still works! We now have a clock that can function without GPS, but will
update with GPS when available.

STEP 6: ADDING A REAL -TIME CLOCK

If the GPS is disconnected for a day or more, the time will start to drift.

The Arduino time library routines work well for short periods of time. Long-term accuracy depends on

the precision and stability of the microcontrollerôs oscillator. A good crystal-based oscillator with an

accuracy of 1 part per million may gain or lose a few seconds every month. In typical microcontroller

environments, time drift can be minutes a day. Time is unreliable after a few weeks of use.

Enter the real-time clock. The most-common RTC is the DS1307,

pictured here. There are many code libraries available for the ó1307.

Note the battery clip. With a coin cell will it will keep track of time for up

to 5 years. The DS1307 uses a 32 kHz crystal (the silver cylinder-

shaped component below the word óBreakoutô) to improve timekeeping

accuracy. Nevertheless, it is not a high-precision timekeeper, and will

gain/lose up to 2 seconds a day depending on ambient temperature.

If a GPS signal is available on a fairly regular basis, say, once per

day, the DS1307 is a good choice. It is inexpensive, readily

available, and easy to use. However, time accuracy can be

significantly improved for a few dollars more. The DS3231 chip,

containing a temperature-controlled crystal oscillator (TXCO),

limits drift to less than one minute per year. Cheap DS3231

modules are available on eBay for $1. But is highly unlikely that

they contain a genuine Maxim DS3231. A better breadboarding

choice would be the Adafruit #3103, pictured at left.

See my DS1307 article for a low-level programming

interface. For simplicityôs sake (and better code), I am

using a code library for this project. Download and install

Paul Stoffregenôs DS1307RTC library from github. The

DS1307 and DS3231 have the same interface and can

use the same libraries.

Wiring up an RTC module is just like the LED display:

two wires for I2C communications and two wires for

power. On my breadboard (see photo at right) Iôve

added the DS3231 module below the display. The two

I2C lines are connected to a vertical bus strip on the

right.

The software library is equally simple. There is a routine

for setting time and one for getting the time. Time can be

expressed in terms of unix time (an integer equaling the

number of seconds elapsed since 00:00 UTC on 01 Jan

1970) or the traditional hours, minutes, seconds, etc.

https://www.adafruit.com/product/3013
http://w8bh.net/avr/AvrDS1307.pdf
https://github.com/PaulStoffregen/DS1307RTC

