
My Numitron

Clock

Bruce E. Hall, W8BH

Many articles on this website start off
“Build your own []”, because they are
projects that you might want to build.
This article is different. Not many will
want to build a Numitron clock.
Numitrons haven’t been made for many
years. And the ones available on eBay
are not inexpensive. I document my
experience here for those of you who
might happen to have a few of these
interesting devices laying around…

Introduction

A friend of mine told me that he had a box of original RCA Numitrons. He

offered to give me some if I could put them to good use. Without a

second thought I said “Of course!” And within a week, I had a small

collection of Numitrons on my workbench. Another project was born.

So, what is a Numitron? It is a seven-segment display that uses

incandescent filaments in an evacuated tube. They were invented in 1970

by RCA as an alternative to Burroughs Corporation’s “Nixie” tube. At that

time, LEDs were just starting to enter the market, and were too small and

too dim to compete. Read this 1970 Popular Electronics article for a

description of the brand-new Numitron device. (Another copy of the

same article is here.)

RCA made several different varieties. Mine is the DR2100V1. This tube is

their low-power version. At 35mW/segment, it uses 70% less power than

its siblings. It also has formed leads, suitable for socketing, and a mean

lifetime expectancy of 100,000 hours. Not bad for a fancy lightbulb!

Read the Numitron datasheet for more information.

http://w8bh.net/
https://en.wikipedia.org/wiki/Seven-segment_display
http://www.rfcafe.com/references/popular-electronics/numitron-readout-march-1970-popular-electronics.htm
http://www.decodesystems.com/numitron.html
http://w8bh.net/numitron_datasheet.pdf

Driving a Numitron

What is the proper way to drive a Numitron tube? The Popular Electronics article, referenced above,

suggested the “CD 2501E” BCD-to-Decimal Decoder, which RCA developed to accompany their

Numitron. RCA published a very useful application note which describes how to use Numitrons with

this decoder/driver. The CD 2501E is long obsolete, of course.

My first instinct was to drive these displays like an LED. A typical LED display driver is the MAX7221,

which interfaces 8 seven-segment displays to a microcontroller using only 3 control lines. It

accomplishes this magical feat by multiplexing. The seven-segment displays are driven sequentially at a

rapid rate. Persistence of vision makes the display seem completely illuminated.

The MAX7221 turned out to be a poor choice indeed. I forgot that, unlike LEDs, incandescent filaments

take time to illuminate. LEDs reach full brightness very quickly; Numitrons do not. Multiplexed

Numitrons are very dim. To reach full brightness, each Numitron segment must be driven in a sustained

manner. [Side note: Yes, you can PWM a Numitron to adjust its brightness, see below.]

A better way to drive Numitrons is with shift-registers. Each Numitron is paired with its own 8-bit shift

register, so that each bit corresponds to a display segment. A very commonly used shift register is the

74HC595. Since the Numitrons require 14mA per segment (112mA when all 8 segments are lit), a

higher-current shift register is required. The TPICB595 is such a device and can sink up to 150mA per

output pin.

Using a TPICBN595, the 3.3v power supply would be out-of-spec for our 2.5V Numitrons. We can either

create a separate 2.5V supply or drop the voltage with a resistor. What resistance would be required to

drop 3.3V to 2.5V at a current of 14mA? R = V/I = (3.3v-2.5V) / 14 mA = 56 ohms. The power required

for each display segment would be the power dissipated by the resistor (0.8V * 14 mA = 11 mW) plus

the display segment itself (35 mW) = 46mW. Each seven-segment display will require a shift-register

and 7 current-limiting resistors. A six-digit display would therefore require 42 resistors.

I was about to use this approach when I discovered a very similar

shift register with built-in current limiting, the TLC5916. This

chip allows us to select the desired current (14mA) with a single

resistor. Perfect! The output current is limited to the resistor

value according to the chart at right. I chose a value of 1.5K,

resulting in a segment current of 12.5mA.

Build a Numitron Display

Time to build something! Let’s wire a TLC5916 driver to a Numitron display, limit the current to

12.5mA/segment, and connect them to an MCU. For my project I am using an ESP8266 microcontroller

module, the Wemos Mini D1, because it has built-in Wi-Fi that I intend to use later. But for now, any

microcontroller will do.

The Numitron was not made for easy breadboarding. I created a small breakout board for that purpose.

Rext Output current (mA)

1.0 K 18.7 mA

1.2 K 15.6 mA

1.5 K 12.5 mA

2.2 K 8.5 mA

2.7 K 6.9 mA

3.3 K 5.7 mA

4.7 K 4.0 mA

http://w8bh.net/an4277.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX7219-MAX7221.pdf
https://en.wikipedia.org/wiki/Multiplexed_display
https://en.wikipedia.org/wiki/Shift_register
https://docs.arduino.cc/tutorials/communication/guide-to-shift-out
https://www.ti.com/lit/ds/symlink/tpic6b595.pdf
https://www.ti.com/lit/ds/symlink/tlc5916-q1.pdf?ts=1687230880879
https://github.com/bhall66/Numitron-Clock/tree/main/PCB/Numitron-breakout

Each segment in a seven-segment display has a name, ‘A’ through

‘G’, as shown in the diagram at right. The top segment is ‘A’. The

segments continue in clockwise fashion through ‘F’. The middle

segment is ‘G’.

The Numitron has 9 pins spaced 36-

degrees apart. An empty slot at the

10th position helps identify which pin

is #1. When looking at the front of

the tube, pin 3 faces you and pin 8 is

in the rear. Bottom-view diagram at

right.

The table at right shows which pin corresponds to each segment.

For example, Numitron pin 3 (the pin facing you) corresponds to

segment ‘E’, which is bottom-left segment. Pin 6 is segment ‘G’,

which is the middle segment. And so on.

Connect the Numitron pins to a TLC5916 driver according to the

third column in the table. Numitron pin 1 connects to TLC5916

pin 8, etc. Lastly, connect Numitron pin 2 ‘common’ to power,

which is 3.3 volts in this case.

To complete the wiring, connect TLC5916 pin 16 to power and

pins 1 and 13 to ground. Connect pin 15 to a 1.5K resistor and

connect the other end of the resistor to ground.

Check your wiring against the schematic at right. The 3 lines

labelled ‘SDI’, ‘CLK’, and ‘LE’ will be driven by a

microcontroller. Pin OE goes to ground (not shown).

The breakout board contains all 3 schematic components.

This board is handy for the experiments that follow.

Numitron
Pin

Segment
name

TLC5916
pin

1 (NC) 8

2 Common (3.3V)

3 Seg ‘E’ 6

4 Seg ‘D’ 12

5 Seg ‘C’ 11

6 Seg ‘G’ 9

7 Seg ‘A’ 10

8 Seg ‘B’ 5

9 Seg ‘F’ 7

https://github.com/bhall66/Numitron-Clock/tree/main/PCB/Numitron-breakout

Talking to a Numitron

The microcontroller and TLC5916 shift register communicate using the Serial Peripheral Interface (SPI).

Data is sent from the microcontroller one bit at a time over the ‘MOSI’ data output line to the shift

register data input line (SDI). It is synchronous data transfer, requiring the MCU’s clock pulse (SCK) to be

connected to the shift register clock line (CLK).

The shift register requires a third line called ‘Latch Enable’ (LE). An upgoing pulse on this line transfers

the shift register contents to the output buffer. When LE returns low, the shift register outputs will be

latched until the next LE pulse.

Here is a sketch that drives a Numitron, available on my GitHub site as Numitron_Step1:

#include "SPI.h" // Serial Peripheral Interface

#define LATCH D8 // to TLC5916 LE (latch enable) pin

byte pattern = 0b00010000; // bit4 = segment g [map: dcagxfeb]

void writeByte(byte b) {
 SPI.transfer(b); // send 1 byte to shift-register via SPI
 digitalWrite(LATCH,HIGH); // latch it on upgoing pulse
 digitalWrite(LATCH,LOW); // complete latch pulse
}

void setup() {
 pinMode(LATCH,OUTPUT);
 digitalWrite(LATCH,LOW); // start with latch low
 SPI.begin(); // using SPI for data transfer
}

void loop() {
 writeByte(pattern); // display segments according to pattern
 pattern = ~pattern; // invert the pattern
 delay(1000); // toggle at 1 second intervals
}

Starting from the top, SPI.h is the built-in Arduino library for the Serial Peripheral interface. On the

ESP8266, the SPI bus uses pins D7 for data out and D5 for the clock. Our TLC5916 shift register requires

a third data line to latch the data, for which we will use D8. So far, so good.

The writeByte() procedure is responsible for transferring data to the shift register. The highlighted line

“SPI.transfer” sends the data, one bit at a time, from the MOSI pin (D7) to the shift register data input

pin SDI. It does this by a protocol which both devices understand. When finished, bits 7 through 0 of

the shift register mimick bits 7 through 0 of the data. But the output pins of the shift register will not

reflect this new result until the latch pin has been pulsed high. This is accomplished by writing the Latch

pin high, then low.

Looking back at the schematic, notice how 8 shift register data lines connect to 8 Numitron pins, one

data line per segment. Illustrating this relationship in a slightly different way:

https://docs.arduino.cc/learn/communication/spi
https://github.com/bhall66/Numitron-Clock/tree/main/Tutorials/Numitron_step1

Seg ‘D’ Seg ‘C’ Seg ‘A’ Seg ‘G’ (dp) Seg ‘F’ Seg ‘E’ Seg ‘B’

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

When a given bit is ‘1’, the corresponding Numitron segment is lit; when the bit is

0, the segment is off. (Bit 3 connects to a decimal point if the Numitron tube

contains one. Mine does not.)

How would one display a minus ‘-‘ sign? On a seven-segment display the central

segment should be lit, which is segment ‘G’. Set this bit to 1 and the remaining

bits to 0:

Seg ‘D’ Seg ‘C’ Seg ‘A’ Seg ‘G’ (dp) Seg ‘F’ Seg ‘E’ Seg ‘B’

0 0 0 1 0 0 0 0

Therefore, the correct byte to send to the shift register is 0b0010000 (or 0x10 in hexadecimal). What

character would we get if we lit every segment except for the center one? Yep, a zero:

Seg ‘D’ Seg ‘C’ Seg ‘A’ Seg ‘G’ (dp) Seg ‘F’ Seg ‘E’ Seg ‘B’

1 1 1 0 1 (or 0) 1 1 1

To create a zero, we should send 0b11101111 (0xEF hexadecimal) to the shift register. 0xE7 works

equally as well, using a 0 in the decimal point position.

The loop() procedure toggles the Numitron display between ‘0’ and ‘-‘ by flipping the data bits from

‘00010000’ to their logical inverse: ‘11101111’. Feel free to experiment! For example, what pattern

would ‘01100101’ create? Answer: it makes a ‘7’, and when the pattern is toggled to ‘10011010’, it

displays a lower-case ‘c’.

Brightness Control

Numitron segments are like light-bulb filaments. They are bright at a certain voltage/current and get

dimmer as the voltage/current is decreased (think flashlight with a dying battery). We can choose the

brightness of our display by adjusting the current passing through each segment. The TLC5916 makes it

easy: a 1.5K resistor fixes the current at a near-maximum 12.5mA. To make the display dimmer,

reduce the current by choosing a larger resistor.

But how can we adjust brightness on the fly? We could replace the fixed resistors with potentiometers,

one per tube. Fortunately, there is another way: pulse width modulation (PWM). With PWM, all the

Numitron tubes are turned on/off at a frequency of several hundred kHz. We control the fraction of

time in which the tubes are enabled. At a duty cycle of 10% (see below), each segment receives current

for 10% of the time and appears to be off or very dim. At 90%, the segments are energized 90% of the

time and are near full brightness.

The pin responsible for simultaneously controlling all segments is the TLC5916 OE (output enable) pin.

Apply PWM to the OE pin and we can control brightness of the entire display.

The Arduino command for PWM is analogWrite(). It takes two parameters: the first is MCU pin to be

controlled, and the second is the duty cycle (expressed as 0-255, where 255 is a duty cycle of 100%).

Consider the following example:

#define OE D3 // to TLC5916 OE (output enable) pin

void setup() {
 pinMode(OE,OUTPUT); // use OE for brightness control
}

void loop() {
 for (int brightness = 0; brightness < 255; brightness++) {
 analogWrite(OE, brightness);
 delay(10);
 }
 for (int brightness = 255; brightness >= 0; brightness--) {
 analogWrite(OE, brightness);
 delay(10);
 }
}

Download Numitron_Step2. The sketch defines D3 as the OE pin and configures it as an output. The

program loop contains two for-loops. The first ramps up the brightness from 0 to 255, and the second

ramps down the brightness from 255 to 0. Each loop calls on analogWrite() to set the duty cycle on pin

D3 with 10mS between each change. The resulting PWM causes the display to alternatively brighten

and dim every 256 x 10mS = 2.56 seconds.

Numitrons respond to PWM in a nonlinear fashion. My tubes do not light at duty cycles below 30%.

https://github.com/bhall66/Numitron-Clock/tree/main/Tutorials/Numitron_step2

Let’s do the Numbers

It’s time to figure out how to display each digit. For

each digit, consider which of the seven segments

must be lit and construct a data byte representing

that collection of segments. Digit “0” requires 6

illuminated segments and is represented by the

byte 0xE7, as discussed above. We can do the

same for the remaining digits, putting our results in

a table.

To display the decimal point in devices that have

them, add 8 (binary “1000”) to the result.

Testing, testing, 1, 2, 3…

Create a sketch to count from 0 to 9, displaying each digit on the Numitron. The loop() procedure

would look like this:

void loop() {
 for (int i=0; i<10; i++) { // count 0..9
 displayDigit(i); // display each digit
 delay(1000); // at 1 second intervals
 }
}

displayDigit() should send segment data to the Numitron driver (the shift register) that corresponds to

the desired digit, according to the table above. To do this, create an array called segments[] which

contains the segment data for each digit:

const byte segments[] =
 {0xE7, 0x41, 0xB3, 0xF1, 0x55, 0xF4, 0xF6, 0x61, 0xF7, 0xF5};

Notice that segments[0] returns the segment data for digit 0; segments[4] returns data for digit 4, etc.

With this array the displayDigit() routine is almost too easy:

void displayDigit(int i) { // display a number 0..9 on the Numitron
 writeByte(segments[i]); // send segment data to shift register
}

You should add error checking. For example, what happens when you call displayDigit(36)? But as an

example, it works just fine. Here is the complete Numitron counter in less than 30 lines of code.

Numitron_Step3:

#include "SPI.h" // Serial Peripheral Interface
#define LATCH D8 // to TLC5916 LE (latch enable) pin

const byte segments[] =

Digit d c a g x f e b = hex

 1 1 1 0 0 1 1 1 0xE7

 0 1 0 0 0 0 0 1 0x41

 1 0 1 1 0 0 1 1 0xB3

 1 1 1 1 0 0 0 1 0xF1

 0 1 0 1 0 1 0 1 0x55

 1 1 1 1 0 1 0 0 0xF4

 1 1 1 1 0 1 1 0 0xF6

 0 1 1 0 0 0 0 1 0x61

 1 1 1 1 0 1 1 1 0xF7

 1 1 1 1 0 1 0 1 0xF5

(blank) 0 0 0 0 0 0 0 0 0x00

https://github.com/bhall66/Numitron-Clock/tree/main/Tutorials/Numitron_step3

 {0xE7, 0x41, 0xB3, 0xF1, 0x55, // segment data for digits 0..4
 0xF4, 0xF6, 0x61, 0xF7, 0xF5}; // segment data for digits 5..9

void writeByte(byte b) {
 SPI.transfer(b); // send 1 byte to shift register via SPI
 digitalWrite(LATCH,HIGH); // latch it on upgoing pulse
 digitalWrite(LATCH,LOW); // complete latch pulse
}

void displayDigit(int i) { // display a number 0..9 on the Numitron
 writeByte(segments[i]); // send segment data to shift register
}

void setup() {
 pinMode(LATCH,OUTPUT);
 digitalWrite(LATCH,LOW); // start with latch low
 SPI.begin(); // using SPI for data transfer
}

void loop() {
 for (int i=0; i<10; i++) { // count 0..9
 displayDigit(i); // display each digit
 delay(1000); // at 1 second intervals
 }
}

The One-Digit Clock

Counting is nice, but we can do better: a one-digit clock. This fun and interesting timepiece requires no

additional hardware.

One of my favorite time libraries is called “ezTime”, by Rop Gonggrijp. Refer to my NTP Clock article for

how I use this library. ezTime encapsulates all timekeeping functions, including obtaining time over the

internet via NTP. To use it, include the library at the top of the sketch. The library assumes a working

WiFi connection, so we will need to add the WiFi library as well:

#include <ezTime.h> // https://github.com/ropg/ezTime
#include <ESP8266WiFi.h> // use this WiFi lib for ESP8266

To access a local network, you must provide valid Wi-Fi credentials. Substitute your own Wi-Fi name

(SSID) and password in the following defines:

#define WIFI_SSID "yourWifiName"
#define WIFI_PWD "yourWifiPassword"

With ezTime, synchronizing your microcontroller with UTC requires just two lines of code. First, in your

setup routine, establish the Wi-Fi connection, then wait until the current time is returned via NTP. All

the nitty-gritty details are handled internally by the ezTime library:

WiFi.begin(WIFI_SSID, WIFI_PWD); // attempt WiFi connection
waitForSync(); // wait for NTP packet return

Displaying the time on a one-digit clock is as simple as displaying four sequential digits – two digits for

the hour and two digits for the minute. Here is a simple solution:

https://github.com/ropg/ezTime
http://w8bh.net/NTP_DualClock.pdf

void showTime(time_t t) {
 int h = hour(t); // get the current hour
 int m = minute(t); // and the current minute
 displayDigit(h/10); delay(500); // show hours as 2 digits
 displayDigit(h%10); delay(500);
 displayDigit(m/10); delay(500); // show minutes as 2 digits
 displayDigit(m%10); delay(500);
}

Now download and review the code for Numitron_Step4. It is a one-digit Numitron clock which

automatically synchronizes to internet time – all in less than 100 lines of code.

Got lots of Numitrons? Try a 6-digit clock.

You might think that a 6-digit clock is more difficult than a 1-digit clock… but it’s not. On the hardware

side, you need five more Numitrons and five more TLC5916 shift registers. At first glance the schematic

is imposing, but is no more than individual 6 tube-driver units.

Notice how the data-out and data-in lines are connected, highlighted in blue.

On the software side, we must write 6 bytes to the shift registers, one byte for each Numitron. For

convenience, store the six bytes into an array called ‘tubes’. tube[0] represents the first (left-most)

Numitron and tube[5] is the last (right-most) one:

byte tube[6]; // scratchpad memory for display tubes 0-5

Do an SPI transfer for each byte in the array. The right-most digit is sent first, because it must be

“shifted” all the way through the shift-registers, from left to right, to the right-most tube. Therefore,

the code below starts by sending data for tube[5] first and ending with tube[0]:

void writeDisplay() {
 for (int i=6; i>=0; --i) // update digits 0-5 in reverse order
 SPI.transfer(tube[i]); // send data to display, 1 byte/tube
 digitalWrite(LATCH,HIGH); // latch it on upgoing pulse
 digitalWrite(LATCH,LOW); // complete latch pulse
}

https://github.com/bhall66/Numitron-Clock/tree/main/Tutorials/Numitron_step4

Finally, showTIme() determines time information for each tube position before calling writeDisplay().

Here is a sample implementation:

void showTime(time_t t) { // display time as "HH MM SS"
 int h = hour(t); // get hours, minutes, and seconds
 int m = minute(t);
 int s = second(t);
 tube[0] = segments[h/10]; // hours 1st digit
 tube[1] = segments[h%10]; // hours 2nd digit
 tube[2] = segments[m/10]; // minutes 1st digit
 tube[3] = segments[m%10]; // minutes 2nd digit
 tube[4] = segments[s/10]; // seconds 1st digit
 tube[5] = segments[s%10]; // seconds 2nd digit
 writeDisplay(); // send data to display
}

Download Numitron_Step5, a simple but complete six-digit Numitron clock. Notice how little it differs

from the 1-digit clock. In fact, it requires fewer lines of code!

But wait, there’s more…

Of course, I couldn’t stop there. I added the following features:

 WiFi configuration

by mobile phone

 ASCII Time data

output via USB

 Adjustable

brightness level

 Selectable

Local/UTC display

 Selectable date

display

 Selectable 12/24-hr

mode

 Leading zero

suppression

 Alphanumeric support

 Diagnostic startup screen

I created two PCBs for my own clock: one for the power supply/MCU and one for the six-tube display. I

also designed a 3D-printed base to house the boards. The PCB Gerbers and the final sketch,

Numitron_clock, are on GitHub.

Last Updated: June 25, 2023

https://github.com/bhall66/Numitron-Clock/tree/main/Tutorials/Numitron_step5
https://github.com/bhall66/Numitron-Clock/tree/main/PCB
https://github.com/bhall66/Numitron-Clock/tree/main/Numitron_clock
https://github.com/bhall66/Numitron-Clock

