

Controlling your

VFO with a

Raspberry Pi

Bruce E. Hall, W8BH

1) INTRODUCTION

Many home-brew rigs use a VFO with direct-digital synthesis (DDS). These DDS devices
are typically controlled by on-board microcontrollers. In this tutorial I will show you how you
can control your VFO from a Raspberry Pi instead.

The Raspberry Pi is a credit card size computer, built for learning and fun. In addition to the
USB and Ethernet ports, it can connect to other hardware, such as a DDS, through its
general-purpose IO (GPIO) interface.

But why use a Pi?

- You want remote/internet-based control
- You want to reprogram your DDS VFO
- You have a Pi and don’t know what to do with it
- You like to tinker, like me.

If you like learning by doing, get out your DDS and Pi. In this tutorial, the DDS I will be
using is the AD9834 from Analog Devices. The DDS and analog circuitry are part of the
“DDS-Development-Kit” by W8DIZ at kitsandparts.com. Other DDS boards will likely
require different interfacing and programming, but the concepts will be the same.

http://kitsandparts.com/

2) PREPARING THE DDS BOARD

The DDS board is really
two boards in one: the
left half of the board
contains the DDS and
analog output circuitry;
the right half is the
ATmega88
microcontroller and its
supporting
components. The
center of the board is
literally two rows of
holes allowing
connections between
the two. Nearly all of
the ATmega88 I/O lines
are brought out for our

use. But for this project, we will ignore the right half of the board and concentrate on the
DDS input lines, highlighted in the blue box. There are three data lines here, marked ‘FS’
for FSYNC, ‘SC’ for SCLK, and ‘SD’ for SDATA. Normally these lines are jumpered to the
microcontroller PD0, PD1, and PD5 lines. Remove the three jumper wires.

On my board I put ‘machine-pin’ IC sockets in
the PCB holes where the jumpers should go.
These work great with regular wire jumpers.
You could also use male or female headers,
depending on how you want to connect to
them. You choose.

The final connection we’ll need is ground.
You can take this from the ground jumper, just
above the DDS lines. You can even remove
the LCD display and use pins 1 or 16 on the
female header.

3) THE GPIO CONNECTOR

The GPIO connector is a block of 26 male pins in
the upper-left corner of the Raspberry Pi board,
arranged 2x13. Pin 1 is lower-left pin (marked
P1) and pin 26 is upper-right. The bottom row are
odd- numbered 1 though 25, and the top row are
even- numbered 2 through 26. The pins are
spaced 0.1” apart. Search “26p female

Pin 26

6
Pin 1

6

connector” to find mating connectors, which cost about $0.50 each.
With a little care, even oversized, 40-pin computer ribbon cables can
be attached. This project only needs four wires, so I used individual
female-to-male breadboard jumber wires.

Keeping track of these pins can be tricky, so I put a paper label on
my pins. See the ‘raspberry leaf’ at doctormonk.com to get a copy of
this really helpful device. We will use GPIO lines 9, 10, 11 and
ground, all conveniently located together (pins 19, 21, 23, and 25).

4) MAKING THE CONNECTIONS

Connect your raspberry pi to
the DDS using four jumper
wires. Simple! I used female-
to-male jumpers, which are
handy for any breadboard work
with the pi. On my board, the
AD9834 uses a 5V supply, but
it tolerant of the 3.3V logic from the Pi, even through the inline 4.7K resistors. Note that the
reverse is not true: the Pi will not tolerate 5V logic inputs. We are OK here because the Pi
is output only.

5) SOFTWARE

The most popular programming language for the Raspberry Pi is Python. I must admit,
before I got my Pi, I’d never heard of Python. But it isn’t hard to learn. Python shares many
common elements other popular languages, such as C and Java. I have written a few
tutorials on programming the Pi, which are on my website at w8bh.net. I also have a tutorial
on using the GPIO ports, which you can find at w8bh.net/pi/GPIO1.pdf

Let’s focus on the DDS requirements. The three inputs to the AD9834 give us an SPI-
compatible interface. It should be possible (and perhaps simpler) to configure your Pi for
SPI and use the Pi’s SPI interface. I have not done that yet, and so I will use a simple “bit-
banging” approach.

Check out the AD9834 datasheet for the signal timing requirements. Now put it away,
‘cause you won’t need it! GPIO signals from the Pi, controlled by a Python application, are
much slower than the minimum timing requirements of the DDS.

Data is sent to the chip serially, one bit at a time, in 16 bit chunks. Each bit is clocked into
the chip by briefly taking the SCLK line low. Here is the algorithm:

DDS Raspberry Pi

FSYNC (input) GPIO 9 (output)

SCLK (input) GPIO 10 (output)

SDATA (input) GPIO 11 (output)

GND GND

http://www.doctormonk.com/
http://w8bh.net/
http://w8bh.net/pi/GPIO1.pdf

1. Before data transfer, FSYNC and SCLK should be high
2. Take FSYNC (data enable line) low
3. Put data bit on the SDATA (serial data) line
4. Pulse the SCLK (serial clock) low. Data is input on the high-to-low transition
5. Repeat steps 3 & 4 for all 16 bits
6. Return FSYNC to logic high

Look at the original source code for Diz’ development kit, and you will see that his SHIFT16
routine follows these steps exactly. Let’s try it in Python. Here it is:

 etPin(FSYNC,0); #enable data input to DDS S

 for b in range(16): #loop for 16 data bits

 value = data & 0x8000 #look at left-most bit

 SetPin(SDAT,value) #puts its value on data line

 data <<= 1 #shift data bits to left

 data &= 0xFFFF #limit data to 16 bits

 PulseClock() #clock in the data bit

 SetPin(FSYNC,1) #brink FSYNC high after word sent

Look at the outer shell first: Take FSYNC low, do a loop for 16 data bits, and return FSYNC
high. The loop itself is a little trickier. We need to send that data right-to-left. That is, the
most significant bit first, the least significant bit last. To get a value of the most significant
bit, we do a logical AND with binary value of that bit: 1000.0000.0000.000 (hex 8000). The
result of that is either $8000 if the bit is one, or zero if the bit is zero. SetPin will put a logic
one on the SDATA line for any nonzero number, including $8000. We are ready to clock in
the data now. I’m sure I could put the call to PulseClock right after SetPin, but I’ve delayed
it for two instructions just to give the data a bit more time to settle. Not necessary, but can’t
hurt.

Finally, shift the data word one bit to the left, using the ‘<<’ operator. This moves the next
bit into the most-significant bit position. Normally we would write it like this: data = data <<
1. But when the variable appears on both sides of the equals sign we can use the
abbreviation: data <<= 1. Similarly, data = data +1 would be data +=1.

PulseClock will briefly take the SCLK line low:

 SetPin(SCLK,0) #bit clocked on high-low transition

 SetPin(SCLK,1) #no delay since python is slow

In assembler you would add a short timing delay to lengthen the clock pulse, but they are
unnecessary in Python.

Now we have duplicated the serial data routine from the original development kit. How do
we convert a desired frequency into a set of AD9834 instructions?

Let’s start with an example. If we want a frequency output of 7.040 MHz, we’ll need a
register value of 18,897,856. See my tutorial on AD9834 programming for more
information. Python gives us floating point arithmetic, so converting from frequency to
register value is very easy:

http://w8bh.net/avr/AD9834.pdf

factor = 2.68435456 #assumes 100 MHz oscillator

 reg = int(hz * factor) #convert Hz to DDS register value

Variable reg now contains the necessary register value, but the AD9834 requires us to
break up the 28-bit value into two 14-bit halves. To get the lower half, we do a logical AND
operation with a number that contains 14 one’s (binary 0011.1111.1111.1111 = hex 3FFF).
To get the upper 14 bits, we shift the register value 14 bits to the right. The right-shift
operator is ‘>>’

#divide 28-bit register value into 14-bit halves

 regLo = reg & 0x3FFF

 regHi = reg >> 14

Finally, the AD9834 requires each 14-bit half to be prefixed by a two-bit command. The
command to put this data into the reg0 register is ‘01’. We can do that logically, by doing a
local OR operation with the binary value 0100.0000.0000.0000 (hex 4000).

#now prefix each half with reg0 command

 regLo |= 0x4000

 regHi |= 0x4000

Now the variables regLo and regHi contain 16 bits of data. They are ready to send to the
DDS, lower half first. The function Shift16 will serially send 16-bits of data to the DDS.

#send both halves to the DDS

 Shift16(regLo)

 Shift16(regHi)

The complete program script is given at the end of this article. I call mine ‘dds’. Under
raspian/linux you make a file executable by changing the file permissions. Then run it,
prefixing the filename with a period & slash:

 Chmod +x dds 

 ./dds 7.040 

  Setting DDS = 7.040000 MHz

 ./dds 7030 

  Setting DDS = 7.030000 MHz

 ./dds 7 

  Setting DDS = 7.000000 MHz

 ./dds 30m 

  Setting DDS = 10.106000 MHz

That’s it. Enable VFO output with a wire jumper from +R or +T to Vcc. The script allows for
Hz, KHz, MHz, or band select inputs. You can enter frequencies manually, or call the script
from your own applications. Put your Pi on a network, and run the script from computers
across the room or miles away. Have Fun!

6) PYTHON SCRIPT for DDS CONTROL:

#!/usr/bin/python

A Python script for controlling a DDS VFO from a Raspbery Pi.

Author : Bruce E. Hall, W8BH <bhall66@gmail.com>

Date : 23 Apr 2013

The DDS used is the Analog Devices AD9834, part of the

DDS-Development kit from KitsAndParts.com.

For more information, see w8bh.net

import RPi.GPIO as GPIO

import sys

#There are three DDS to RPi GPIO connections (plus ground):

#DDS GPIO

FSYNC = 9

SCLK = 10

SDAT = 11

pins = [FSYNC,SCLK,SDAT]

#set up a few band defaults = standard qrp frequencies

dict = {'80m':3.560,'40m':7.040,'30m':10.106,'20m':14.060,'15m':21.060}

Low-level routines

These routines access GPIO directly

def InitIO():

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 for pin in pins:

 GPIO.setup(pin,GPIO.OUT)

def SetPin(pinNumber,value):

 #sets the GPIO pin to desired value (1=on,0=off)

 GPIO.output(pinNumber,value)

DDS routines:

def InitDDS():

 #Start with FSYNC & SCLK lines high

 SetPin(FSYNC,1)

 SetPin(SCLK,1)

def PulseClock():

 #pulses the DDS serial clock line LOW

 SetPin(SCLK,0) #bit clocked on high-low transition

 SetPin(SCLK,1) #no delay since python is slow

def Shift16 (data):

 #Send data word = 16 serial bits to DDS

 #FSYNC is low for duration of data transfer

 #SCLK is pulsed low to clock in each bit

 SetPin(FSYNC,0); #enable data input to DDS

 for b in range(16): #loop for 16 data bits

 value = data & 0x8000 #look at left-most bit

 SetPin(SDAT,value) #puts its value on data line

 data <<= 1 #shift data bits to left

 data &= 0xFFFF #limit data to 16 bits

 PulseClock() #clock in the data bit

 SetPin(FSYNC,1) #brink FSYNC high after word sent

def ResetDDS():

 Shift16(0x2100) #this is DDS reset command

def OutputA():

 Shift16(0x2000) #sends DDS register0 to output

def OutputB():

 Shift16(0x2800) #sends DDS register1 to output

def GetFrequency(s):

 #convert string input to a frequency value, in Hz

 #Examples:

 # Band defaults: '30m' --> 10,106,000

 # KHz inputs: '7040' --> 7,040,000

 # MHz inputs: '7.040' --> 7,040,000

 # Hz inputs: '10106000' --> 10,106,000

 s = dict.get(s,s) #look for band defaults

 try: #dont have a cow with typos

 x = float(s) #convert string to number in Hz

 if (x<99): #assume 1-2 digit numbers are MHz

 x *= 1000000

 elif (x<99999): #assume 3-5 digit numbers are KHz

 x *= 1000

 except ValueError:

 x = 0

 print "Bad input"

 return x

def SetFrequency(hz):

 #input = frequency in Hz; result: sends command to DDS

 #this routine converts requested Hz into a DDS register value

 #the conversion factor depends on the master oscillator input

 #My DDS uses a 100 MHz, so factor = 2^28 steps/100,000,000 Hz

 factor = 2.68435456 #assumes 100 MHz oscillator

 if (hz<0) or (hz>30000000): #my DDS is good for 30 MHz max.

 print "input out of range"

 else:

 reg = int(hz * factor) #convert Hz to DDS register value

 #divide 28-bit register value into 14-bit halves

 regLo = reg & 0x3FFF

 regHi = reg >> 14

 #now prefix each half with reg0 command

 regLo |= 0x4000

 regHi |= 0x4000

 #send both halves to the DDS

 Shift16(regLo)

 Shift16(regHi)

Main Program

InitIO()

InitDDS()

if len(sys.argv)<2:

 print "Need desired frequency (Examples: 7.040, 7040, 40m)"

else:

 value = GetFrequency(sys.argv[1].lower())

 if value>0:

 print "Setting DDS = %f MHz" % (value/1000000)

 ResetDDS()

 SetFrequency(value)

 OutputA()

END ###

