

Raspberry Pi

GPIO for Dummies

Part 2: Python

Bruce E. Hall, W8BH

1) INTRODUCTION

In part 1 of this series, we discussed the GPIO ports on the Raspberry Pi. We accessed the
ports from the command line, lighting up LEDs on the “Push your Pi” kit from
MyPiShop.com. In this part we will develop a more robust interface using Python.

2) PUSH YOUR PI

The “Push your Pi” kit is a small add-on board that mounts on the GPIO connector. It
contains 8 super-bright LEDs and 8 switches. I think of the 8 LEDs as a string of binary bits
in a byte and number them accordingly, left to right: LED7 through LED0. The LEDs and
switches are connected to the GPIO ports as follows:

You might notice that each device has a silkscreened number on the PCB. These numbers
are the GPIO port numbers (very nice!). My kit uses version 1 numbers, which are slightly
different than my
version 2 Pi. The
table shows the
version 2 numbers.
Do you know which Pi
hardware version you
have? Version 2 Pi’s
have two mounting
holes, but version 1
boards do not have
any mounting holes.

*Changed in version 2

LED# GPIO SWITCH# GPIO

7 2* 1 15

6 3* 2 17

5 4 3 18

4 7 4 27*

3 8 5 22

2 9 6 23

1 10 7 24

0 11 8 25

3) PYTHON

Why Python? Other languages, like C, will work equally well. But Python seems to be a
preferred language on the Raspberry Pi and this project a good excuse to
learn something about it. I prefer starting simple, getting small stuff to work, then
adding to it. If you like this method too then read on.

There are two popular Python modules for GPIO programming: RPi.GPIO and WiringPi. I
downloaded and installed both. WiringPi is currently the most feature-complete, and also
has a familiar feel to anyone used to Arduino coding. But I am going to skip over it, and
write about RPi.GPIO instead. Try both and see which one you prefer.

If you are using a recent version of Raspian on your Pi, then you already have RPi.GPIO
installed. If not, visit the project home page at http://code.google.com/p/raspberry-
gpiopython/ to get the latest version.

Let’s start with the interactive-mode python interpreter. RPi.GPIO must run from root, so
please login as root and start python. You will see the triple-chevron (>>>) prompt:

$ sudo su

python

>>>

Import the RPi.GPIO module. The first thing we’ll do is configure it to use the Broadcom
port-numbering scheme. And we’ll turn off warnings about port usage:

>>> import RPi.GPIO as GPIO

>>> GPIO.setmode(GPIO.BCM)

>>> GPIO.setwarnings(False)

If python complains at the first statement, make sure that: 1) you have already installed
RPi.GPIO; 2) you spelled it correctly, with a lower-case ‘i’; and 3) you started python from
root.

Now we are ready to specify which I/O pins we are going to use, and how we are going to
use them. Let’s try GPIO4, like in part 1, which is attached to the third LED.
We must declare it as an output.

>>> GPIO.setup (4, GPIO.OUT)

Assuming that you got no feedback from the four python statements above, output on
GPIO4 is ready. Let’s try lighting the LED

>>> GPIO.output(4,1)

Is the LED on?. Use the output function again to turn it off:

>>> GPIO.output(4,0)

If your LED turned on & off, everything is working fine. Type exit() to leave python. It’s time
to write a real program.

4) A SIMPLE PYTHON SCRIPT

Let’s put these statements in the form of a python script. You can use IDLE, Geany, or
even a simple text editor like Nano to enter your code. The first line in your script should be
a command that points to the proper interpreter of your code. In this case, we need to point
to the python interpreter, which is located at /usr/bin/python. We point to python using an
interpreter directive, the special character combination known as the shebang (#!).

#!/usr/bin/python

We need to import the time module, in addition to RPi.GPIO. Now we have enough to
create an honest-to-goodness python script. Copy the following into your editor of choice,
and save it as blink.py:

#!/usr/bin/python

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(4,GPIO.OUT)

while True:

 GPIO.output(4, 1)

 time.sleep(1)

 GPIO.output(4, 0)

 time.sleep(1)

Change the file permissions, and you can run it from the shell:

$ sudo su

chmod +x blink.py

./blink.py

If all goes well, the third LED (on GPIO4) should be blinking away. Hit Ctrl-C to stop the
fun. We have the same result as we had in part1, but programmed from python instead of
bash. It is time to expand our code, and tackle multiple inputs & outputs.

5) A BIGGER PYTHON SCRIPT

First, for convenience & readability, declare each LED and switch in terms of its GPIO port
number.

LED7 = 2 #GPIO2; use 0 on rev1 boards

LED6 = 3 #GPIO3; use 1 on rev1 boards

http://en.wikipedia.org/wiki/Shebang_(Unix)

LED5 = 4 #GPIO4

LED4 = 7 #GPIO7

LED3 = 8 #GPIO8

LED2 = 9 #GPIO9

LED1 = 10 #GPIO10

LED0 = 11 #GPIO11

LEDS = [LED0,LED1,LED2,LED3,LED4,LED5,LED6,LED7]

SW1 = 15 #GPIO15

SW2 = 17 #GPIO17

SW3 = 18 #GPIO18

SW4 = 27 #GPIO27; use 21 on rev1 boards

SW5 = 22 #GPIO22

SW6 = 23 #GPIO23

SW7 = 24 #GPIO24

SW8 = 25 #GPIO25

SWITCHES = [SW1,SW2,SW3,SW4,SW5,SW6,SW7,SW8]

Combine all of the I/O setup commands into a function called InitIO. We can set all of the
LEDs as outputs using a for loop and the LED list. Similarly, we can set all of the switches
as inputs. We add an extra parameter to the input setup, enabling pull-up resistors. These
internal pull-ups keep the input at logic ‘1’ until the switch is pressed. Without the pull-ups
enabled, the port input is ‘floating’ and at an unpredictable logic state.

def InitIO():

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 for led in LEDS:

 GPIO.setup(led,GPIO.OUT)

 for switch in SWITCHES:

 GPIO.setup(switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)

Next, create some small, helper functions that encapsulate direct calls to GPIO. These
simple routines let us set individual LEDs and read individual switches. Notice the ‘not’
operator in the GetSwitch routine. Our switches are pulling the input port down to logic 0,
and will result in a 0 result when the switch is pressed. The ‘not’ converts the 0 to 1, and
vice versa. Also, the last four functions could be rewritten in terms of SetLed, if desired.
You choose!

def GetSwitch(index):

 #returns value of selected switch. Expects value 0-7

 return not GPIO.input(SWITCHES[index])

def SetLed(num,value):

 #sets the led to desired value (1=on,0=off)

 GPIO.output(LEDS[num],value)

def AllLedsOn():

 for led in LEDS:

 GPIO.output(led, GPIO.HIGH)

def AllLedsOff():

 for led in LEDS:

 GPIO.output(led, GPIO.LOW)

def TurnOnLed(num):

 #turn on the indicated led. Expects num 0-7

 GPIO.output(LEDS[num], GPIO.HIGH)

def TurnOffLed(num):

 #turn off the indicated led. Expects num 0-7

 GPIO.output(LEDS[num], GPIO.LOW)

You should try them as you go. Start your main program block with InitIO(), then call
whichever of them you want to try. For instance, what would the following do?

InitIO()

AllLedsOn()

time.delay(2)

AllLedsOff()

I like to build simple functions first and then call them, testing as I go. This ‘bottom-up’
programming style works well for me, especially when I am learning how to do something
new. It is a good confidence-builder. Try some of your own simple functions. Perhaps you
can take the test code above and put it into its own ‘FlashLed’ function.

Here is a more complex function: DisplayBinary. I want to be able to use the 8 LEDs to
display an 8 bit binary number. For example, the number 101 in decimal is 0x65 in
hexadecimal or 01100101 in binary. We’ll use the 8 LEDs to display these 8 bits:

Led7 Led6 Led5 Led4 Led3 Led2 Led1 Led0

0 1 1 0 0 1 0 1

Every other LED should be on. To display any binary pattern, we look at each bit: if it’s a
one, then turn the led on; otherwise turn it off. We can use the left shift ‘<<’ operator to
select each bit. For 0x65, the value of bit2 (the third bit from the right) is 1. To isolate this
bit, we can use a ‘mask’ that is all zeros except for bit2. Then, went we logically AND the
value with this mask, the result will be greater than zero if bit2 was 1, and zero if bit2 was
zero:

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

0 1 1 0 0 1 0 1 Value = 0x65

0 0 0 0 0 1 0 0 Mask = 1<<2

0 0 0 0 0 1 0 0 Result = Value & Mask

Using this mask & value approach, it is easy to turn on the correct LEDs. Select each bit,
and set the LED according to the result. Any nonzero result from (value & mask) will result
in the LED turning on.

def DisplayBinary(value):

 #displays value on LEDS in binary format

 for bit in range(8):

 mask = 1<<bit

 SetLed(bit,value & mask)

Nice and neat. We can use the left shift operator for another trick: bar graphs. If we want to
light up any number of sequential LEDs, the corresponding binary value is (2^n) -1. For
instance, 4 LEDs would be a value of 2^4 -1 = 16-1 = 15 (binary 00001111). Performing the
2^n is just the left shift operator: 2^n = (1<<n). If you don’t believe me, type python on the
command line to get into immediate-mode, then type ‘1<<4’. You’ll get 16 (2^4) as your
answer.

$ python

>>> 1<<4

16

>>> exit()

$

Let’s see why that works. Start with 1 (binary 00000001) and shift it to the left. Every time
you do, the value of the byte doubles.

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

0 0 0 0 0 0 0 1 Starting value = 1 (2^0)

0 0 0 0 0 0 1 0 1
st
 shift: value = 2 (2^1)

0 0 0 0 0 1 0 0 2
nd

 shift: value = 4 (2^2)

0 0 0 0 1 0 0 0 3
rd

 shift: value = 8 (2^3)

0 0 0 1 0 0 0 0 4
th
 shift: value = 16 (2^4)

A bar graph function might come in handy, so let’s make one:

def BarGraph (value):

 #light up same # of LEDs as value. Expects values 0-8

 temp = 1<<value

 DisplayBinary(temp-1)

That’s all for part 2. The script that follows includes a few additional display routines. There
is also a routine for getting switch input. Try them out, and then add your own!

6) PYTHON SCRIPT for GPIO, PART 2:

#!/usr/bin/python

GPIO2 : Python control of the Raspberry Pi GPIO ports

Author : Bruce E. Hall <bhall66@gmail.com>

Date : 25 Mar 2013

Use this script with the “Push your Pi” kit from MyPiShop.com

See w8bh.net for more information.

import RPi.GPIO as GPIO

import time

LED7 = 2 #GPIO2; use 0 on rev1 boards

LED6 = 3 #GPIO3; use 1 on rev1 boards

LED5 = 4 #GPIO4

LED4 = 7 #GPIO7

LED3 = 8 #GPIO8

LED2 = 9 #GPIO9

LED1 = 10 #GPIO10

LED0 = 11 #GPIO11

LEDS = [LED0,LED1,LED2,LED3,LED4,LED5,LED6,LED7]

SW1 = 15 #GPIO15

SW2 = 17 #GPIO17

SW3 = 18 #GPIO18

SW4 = 27 #GPIO27; use 21 on rev1 boards

SW5 = 22 #GPIO22

SW6 = 23 #GPIO23

SW7 = 24 #GPIO24

SW8 = 25 #GPIO25

SWITCHES = [SW1,SW2,SW3,SW4,SW5,SW6,SW7,SW8]

Bit-manipulation routines

Nothing here relates to GPIO or the 'Push your Pi' kit.

def ReverseBits (byte):

 #reverse the bit order in the byte: bit0 <->bit 7, bit1 <-> bit6, etc.

 value = 0

 currentBit = 7

 for i in range(0,8):

 if byte & (1<<i):

 value |= (0x80>>i)

 currentBit -= 1

 return value

def ROR (byte):

 #perform a 'rotate right' command on byte

 #bit 1 is rotated into bit 7; everything else shifted right

 bit1 = byte & 0x01 #get right-most bit

 byte >>= 1 #shift right 1 bit

 if bit1: #was right-most bit a 1?

 byte |= 0x80 #if so, rotate it into bit 7

 return byte

def ROL (byte):

 #perform a 'rotate left' command on byte

 #bit 7 is rotated into bit 1; everything else shifted left

 bit7 = byte & 0x080 #get bit7

 byte <<= 1 #shift left 1 bit

 byte &= 0xFF #only keep 8 bits

 if bit7: #was bit7 a 1?

 byte |= 0x01 #if so, rotate it into bit 1

 return byte

Low-level routines

These routines access GPIO directly

def InitIO():

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 for led in LEDS:

 GPIO.setup(led,GPIO.OUT)

 for switch in SWITCHES:

 GPIO.setup(switch,GPIO.IN, pull_up_down=GPIO.PUD_UP)

def GetSwitch(index):

 #returns value of selected switch. Expects value 0-7

 return not GPIO.input(SWITCHES[index])

def SetLed(num,value):

 #sets the led to desired value (1=on,0=off)

 GPIO.output(LEDS[num],value)

Intermediate-level routines

These routines perform simple tasks with the I/O devices,

def TurnOnLed(num):

 #turn on the indicated led. Expects num 0-7

 SetLed(num,1)

def TurnOffLed(num):

 #turn off the indicated led. Expects num 0-7

 SetLed(num,0)

def FlashLED(num, delay=0.08):

 #turn on specified LED for given amount of time

 TurnOnLed(num)

 time.sleep(delay)

 TurnOffLed(num)

def AllLedsOn():

 for i in range(8):

 TurnOnLed(i)

def AllLedsOff():

 for i in range(8):

 TurnOffLed(i)

def DisplayBinary(value):

 #displays value on LEDS in binary format

 for bit in range(8):

 mask = 1<<bit

 SetLed(bit,value & mask)

def BarGraph (value):

 #light up same # of LEDs as value. Expects values 0-8

 temp = 1<<value

 DisplayBinary(temp-1)

Test routines:

These routines perform more complex tasks with the I/O devices,

calling on the low and intermediate level routines

def BlinkAll(numCycles=4, delay=0.5):

 for count in range(numCycles):

 AllLedsOn()

 time.sleep(delay)

 AllLedsOff()

 time.sleep(delay)

def Count(upTo=0xFF, delay=0.1):

 #count in binary to the value 'upTo'

 for count in range(upTo):

 DisplayBinary(count)

 time.sleep(delay)

def Cylon (numCycles=8, delay=0.08):

 #creates a cyclon animation on the LEDs

 for count in range(numCycles):

 for i in range(7):

 FlashLED(i,delay)

 for i in range(7,0,-1):

 FlashLED(i,delay)

def SwitchTest():

 #lights up LED associated with pressed switch

 print "Press some switches. This test lasts about 15 seconds."

 for count in range(150):

 for i in range(8):

 SetLed(i,GetSwitch(i))

 time.sleep(0.1)

def BarGraphTest(delay=0.4):

 #display 0 through 8 as a bar of lighted LEDs

 for value in range(9): #count up

 BarGraph(value)

 time.sleep(delay)

 for value in range(7,-1,-1): #count back down

 BarGraph(value)

 time.sleep(delay)

def RotateTest (numCycles=32, delay=0.05):

 #rotates a binary pattern on the LEDs

 for i in range(1,8):

 pattern = (1<<i) - 1

 for count in range(numCycles):

 DisplayBinary(pattern)

 time.sleep(delay)

 pattern = ROR(pattern)

 for i in range(7,0,-1):

 pattern = (1<<i) - 1

 for count in range(numCycles):

 DisplayBinary(pattern)

 time.sleep(delay)

 pattern = ROL(pattern)

Main Program

InitIO()

AllLedsOff()

SwitchTest()

Cylon()

BarGraphTest()

RotateTest()

Count()

BlinkAll()

END ###

