

 Beginner’s

Guide

to the

PI MATRIX

 Part 4 :

Text Scrolling

by
Bruce E. Hall, W8BH

1) INTRODUCTION

In the first three parts of this series, we looked at how to build the Pi Matrix and how to drive
its 16 pins. But 16 pins cannot completely address all 64 LEDs at the same time. In this
tutorial we’ll talk about multiplexing and learn how to scroll text characters across the
display.

2) MULTIPLEXING

So far, all of our display routines involve turning on a number of LEDs in a row, and
repeating the same pattern over any number of rows. But for some applications, this is not
enough. Suppose we need to turn on 3 LEDs in row 1, a different number of LEDs in row 2,
and yet another pattern in row 3. We will need this capability if we want to display complex
symbols on the display, like text characters. We need multiplexing.

With multiplexing, we don’t display all the rows at the same time; we display them
sequentially:

 For each row:

- Display pattern #n on row #n
- Wait a few milliseconds (at most)

If we do this fast enough, our eyes are tricked into thinking that all of the rows are being
displayed at the same time. We must refresh the entire display at least 30 times per
second, which means that we cannot spend more than about 4 mS on each row. Python
does not run too quickly on the Pi, so the wait between rows may be omitted. The following
simple routine will do all the multiplexing we need:

def MultiplexDisplay (z,count):

 for count in range(0,count):
 for row in range(0,8):
 SetPattern(1<<row,z[row]))

The variable Z is a list with 8 elements, each element holding a row pattern: z[0] holds the
pattern for row 0, etc. The whole display is refreshed (count) times, giving the user enough
time to view and interpret the display. Easy!

3) PUPPIES AND FONTS

I thought it would be interesting to draw some
characters on the matrix, but my 9 year old
daughter had a different idea: puppies. She
pulled out some graph paper, asked me to
draw the right-sized box, and then proceeded
to shade in the squares of her puppy design.

She handed the paper back to me, and
waited for me to put her design on the matrix.
Let’s do it! Starting with the top row, we see
that only bit 2 is lit. For this we need binary
00000100, which is 0x04. In the next row, we
have bits 1 and 2, which is 0x06. Here are
the values that we will need for all eight rows:
0x04, 0x06, 0x27, 0x44, 0x3C, 0x3C, 0x24,
0x24. That’s our list input for the routine:

def DisplayPuppy():
z = [0x04, 0x06, 0x27, 0x44, 0x3C, 0x3C, 0x24, 0x24]

 MultiplexDisplay(z,100)

My daughter was pleased, and I was too! This gave me enough encouragement to tackle
the alphabet. But surely someone has done this before me. A quick internet search for 8x8
fonts gave me exactly what I needed: 128 characters in ASCII order, encoded as 8 rows of
8 pixels (bits). All I needed to do was ‘pythonize’ the data into one big list of lists, like this:

data = […

[0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00], # U+0041 (A)
[0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00], # U+0042 (B)
[0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00], # U+0043 (C)

 …]

This looks useful, so I put it into its own file, font0.py. To add it to your program, all you
have to do is import it. The big list is referred to by the module name, dotted with list name:

 C0 C1 C2 C3 C4 C5 C6 C7

R0 X

R1 X X

R2 X X X X

R3 X X

R4 X X X X

R5 X X X X

R6 X X

R7 X X

font0.data. The index to any character in the list is the ascii number of the character, which
we can get by using the python function ord. Try this:

import font0
char = raw_input(“Enter a character to display: “)
z = font0.data[ord(char)]
#print char, z
MultiplexDisplay(z,100)

With just a few lines of code we can display any character on our Pi Matrix. I added the
‘#print z’ statement for debugging purposes. It is commented out, so it doesn’t do anything.
Remove the hash and it will show you the character’s data.

4) TEXT

Now let’s try displaying words and sentences. Enter a string, and display each character in
the string:

def DisplayString():
message = raw_input(“Enter a message to display: “)
for char in message:
 z = font0.data[ord(char)]
 #print char, z
 MultiplexDisplay(z,100)

Python is pretty cool here, because it is able to iterate over all of the characters in the
message without having to grab each character or explicitly set boundaries.

5) SCROLLING

Its confession time: I have no idea how one is supposed to implement a text scroll function.
So what follows may be the worst text scrolling routine ever made. But I made it, and it
works.

To scroll you need two pieces of data: the data that is currently being displayed and the
data that is about to be displayed. On our matrix this means we will keep track of data for
two characters at a time. I call our current character ‘z’, since this is how I started (above),
and call the next (buffered) character ‘buf’. You can name them better! To scroll, we shift
our current display one pixel to the left, and move our buffered data onto the display by the
same amount. English is written left-to-right, so leftward scrolling works the best.

Let’s try an example, the word ‘Pi’:

Here is our data: the blue
boxes are ‘Z’, representing
what is being displayed on
the matrix. The green
boxes are ‘buf’, the
buffered data waiting to be
written to the display.

z -------------------------------------- buf -----------------------------------

In this example we will scroll the word ‘Pi’. The ‘P’ is being displayed, and the ‘i’ waiting its

turn. If we scroll to the left by one pixel, the leftmost blue column disappears. Although

only the ‘P’ is visible, both characters have shifted slightly to the left:

To do this in code, take one
row at a time. Shift the bits
in the row to the left. We
just need to make sure that
the leftmost bit in the green
box (buf) gets transferred to
the rightmost bit in blue (z) .

z <------------------------------------- buf <---------------------------------

Here is what things look like on the next scroll. The leading part of the ‘I’ is now appearing

on the display. But wait a second – what if we were doing a longer word, like ‘pie’. We

need to add the ‘e’, don’t we? There is too much space behind the ‘i’ already:

Don’t worry. Remember
that the green box is just a
buffer, and isn’t being
displayed. We’ll fill it with a
new character as soon as
the previous character has
been completely shifted
‘into the blue’.

z <------------------------------------- buf <---------------------------------

It is time to code the shift routine, using my friends z & buf:

X X X X X X X X

 X X X X

 X X X X X X X

 X X X X X X X

 X X X X

 X X X X

X X X X X X X X

X X X X X X X

X X X X

X X X X X X X

X X X X X X X

X X X X

X X X X

X X X X X X X

X X X X X X

X X X

X X X X X X

X X X X X X

X X X

X X X

X X X X X X

def ScrollLeft (z,buf):
 for row in range(0,8):
 z[row] >>= 1 #shift current image row
 if buf[row] & 0x01: #is lsb of buffer high?
 z[row] |= 0x80 #rotate lsb of buf into msb of Z
 buf[row] >>= 1 #shift buffer row, too.

The ‘>>= 1’ operation shifts the operand one bit: b7 becomes b6, and so on. We do this for
each z[row] and buf[row]. The if statement shifts data from buf to z.

Now we have all the parts we need to scroll. Start with a blank display, and load the first
character into buf. Scroll one bit at a time, and display the data. Every 8

th
 scroll, load a

new character into buf. Done!

6) MAKING IT USEFUL

My first python program grabbed user input from a prompt like this: st = raw_input(“Enter

something: “). There are other ways to get input, though. One method is to take it from a

command line parameter, like this:

./matrix4.py “Go Away!”

It is easy to get the command line parameters in Python. First, import the sys module.
Then, sys.argv will return the list of command line parameters:

import sys
print sys.argv

The program name ‘matrix4.py’ is contained in sys.argv[0], and our text is in sys.argv[1].
We can also get text from something called ‘standard input’. Stdin is the source for
command-line programs in all Unix-like operating systems. By default, this is the keyboard.
If we want to look for other sources from Python, we can read from sys.stdin instead.
Combining the two gives us lots of input choices:

import sys

if len(sys.argv)>1:
 st = sys.argv[1]
else:
 st = sys.stdin.read()

Now we can get do all sorts of fancy linux stuff, like pipes and redirects:

 ./matrix4.py "The yellow brown dog"
 echo "once I pondered weak and weary" | ./matrix4.py
 cat poem.txt | ./matrix4.py
 ./matrix4.py <poem.txt

7) CONCLUSION

Visit mypishop.com and pick up a Pi Matrix display. Build it. Learn some Python and have fun!

Pi Matrix tutorial #1, construction: http://w8bh.net/pi/PiMatrix1.pdf

Pi Matrix tutorial #2, test routines: http://w8bh.net/pi/PiMatrix2.pdf

Pi Matrix tutorial #3, toolkit: http://w8bh.net/pi/PiMatrix3.pdf

Pi Matrix tutorial #4, text scrolling: http://w8bh.net/pi/PiMatrix4.pdf

YouTube video: http://youtu.be/VbPBNmlGy34

8) PYTHON SCRIPT for PART4:

#!/usr/bin/python

Matrix4: text scrolling on the Pi Matrix

This application will let you scroll text

across the Pi Matrix.

To learn more, visit w8bh.net

Author: Bruce E. Hall

Date : 21 Feb 2013 <bhall66@gmail.com>

import smbus #gives us a connection to the I2C bus

import time #for timing delays

import random #random number generator

import font0 #basic bitmapped 8x8 VGA font

import sys #for access to command-line parameters

#Definitions for the MCP23017 chip

ADDR = 0x20 #The I2C address of our chip

DIRA = 0x00 #PortA I/O direction, by pin. 0=output, 1=input

DIRB = 0x01 #PortB I/O direction, by pin. 0=output, 1=input

PORTA = 0x12 #Register address for PortA

PORTB = 0x13 #Register address for PortB

ORIENTATION = 180 #default viewing angle for the pi & matrix

 #set this value according to your viewing angle

 #values are 0 (power jack on left)

 # 90 (power jack on bottom)

 # 180 (power jack on right)

 # 270 (power jack on top)

rows = 0x00 #starting pattern is (0,0) = all LEDS off

columns= 0x00

delay = 0.08 #time delay between LED display transitions

 #smaller values = faster animation

http://www.mypishop.com/
http://w8bh.net/pi/PiMatrix1.pdf
http://w8bh.net/pi/PiMatrix2.pdf
http://w8bh.net/pi/PiMatrix3.pdf
http://w8bh.net/pi/PiMatrix4.pdf
http://youtu.be/VbPBNmlGy34

Lower level routines for bit-manipulation.

Nothing here relates to our snazzy Pi Matrix.

def ReverseBits (byte):

 #reverse the order of bits in the byte: bit0 <->bit 7, bit1 <-> bit6, etc.

 value = 0

 currentBit = 7

 for i in range(0,8):

 if byte & (1<<i):

 value |= (0x80>>i)

 currentBit -= 1

 return value

def ROR (byte):

 #perform a 'rotate right' command on byte

 #bit 1 is rotated into bit 7; everything else shifted right

 bit1 = byte & 0x01 #get right-most bit

 byte >>= 1 #shift right 1 bit

 if bit1: #was right-most bit a 1?

 byte |= 0x80 #if so, rotate it into bit 7

 return byte

def ROL (byte):

 #perform a 'rotate left' command on byte

 #bit 7 is rotated into bit 1; everything else shifted left

 bit7 = byte & 0x080 #get bit7

 byte <<= 1 #shift left 1 bit

 if bit7: #was bit7 a 1?

 byte |= 0x01 #if so, rotate it into bit 1

 return byte

Lower Level LED Display routines.

These write data directly to the Pi Matrix board

def Write (register, value):

 #Abstraction of I2C bus and the MCP23017 chip

 #Call with the chip data register & value pair

 #The chip address is constant ADDR (0x20).

 bus.write_byte_data(ADDR,register,value)

def EnableLEDS ():

 #Set up the 23017 for 16 output pins

 Write(DIRA, 0x00) #all zeros = all outputs on PortA

 Write(DIRB, 0x00) #all zeros = all outputs on PortB

def DisableLEDS ():

 #Set all outputs to high-impedance by making them inputs

 Write(DIRA, 0xFF); #all ones = all inputs on PortA

 Write(DIRB, 0xFF); #all ones = all inputs on PortB

def TurnOffLEDS ():

 #Clear the matrix display

 Write(PORTA, 0x00) #set all columns low

 Write(PORTB, 0x00) #set all rows low

def TurnOnAllLEDS ():

 #Turn on all 64 LEDs

 Write(PORTA, 0xFF) #set all columns high

 Write(PORTB, 0x00) #set all rows low

def WriteToLED (rowPins,colPins):

 #set logic state of LED matrix pins

 Write(PORTA, 0x00) #turn off all columns; prevent ghosting

 Write(PORTB, rowPins) #set rows first

 Write(PORTA, colPins) #now turn on columns

Intermediate-level routines for

LED Pixel, Row, Column, and Pattern display

def SetPattern (rowPattern,colPattern,orientation=ORIENTATION):

 #Applies given row & column patterns to the matrix.

 #For columns, bit 0 is left-most and bit 7 is at far right.

 #For rows, bit 0 is at the top and bit 7 is at the bottom.

 #Example: (0x07,0x03) will set 3 row bits & 2 columns bits,

 #formaing a rectagle of 6 lit LEDS in upper left corner of

 #the matrix, three rows tall and two columns wide.

 #Why? 0x07 = 0b00000111 (three lower row bits set).

 # 0x03 = 0b00000011 (two lower column bits set).

 global rows, columns #save current row/column

 rows = rowPattern

 columns = colPattern

 if orientation==0:

 WriteToLED(~rows,ReverseBits(columns))

 elif orientation==90:

 WriteToLED(~columns,rows)

 elif orientation==180:

 WriteToLED(~ReverseBits(rows),columns)

 elif orientation==270:

 WriteToLED(~ReverseBits(columns),ReverseBits(rows))

def MultiplexDisplay (z,count):

 # call this routine with Z, the image to display on the matrix

 # Z is a list containing 8 bytes (8x8=64 bits for 64 LEDs)

 # z[0] is data for the top row of the display; z[7] is bottom row.

 # count is number of times to cycle the display

 for count in range(0,count):

 for row in range(0,8):

 SetPattern(1<<row,z[row]) #quickly display each row

Application Routines

Main Program & supporting routines go here.

def GetSomeText():

 # Get some text for scrolling on the LEDs.

 #

 # The easiest way is just to prompt for it, like this:

 # st = raw_input("Enter a string to display: ")

 #

 # Instead, let's check the command line.

 # If nothing there, then get from standard input.

 # This allows us to do fancy stuff like pipes & redirects like:

 #

 # ./myscript.py time

 # ./myscript.py "The yellow brown dog"

 # echo "once I pondered weak and weary" | ./myscript.py

 # cat poem.txt | ./myscript.py

 # ./myscript.py <poem.txt

 if len(sys.argv)>1: #are there any command line args?

 st = sys.argv[1] #yes, so take first one as text

 else:

 print "Enter text to display, followed by EOF (Ctrl-D)."

 st = sys.stdin.read() #no, so get standard input instead

 # See if the input was either 'time' or 'date'

 # Display time and date if they were requested.

 if st=="time":

 st = 'The time is ' + time.strftime("%I:%M %p")

 elif st=="date":

 st = 'The date is ' + time.strftime("%A, %b %d, %Y")

 # Add a space to the end of the message - looks better for repeats

 st += ' '

 return st

def CharImage (ch):

 # returns the 8x8 raster image for given character.

 # the result is a list of 8 bytes, 1 byte for each raster row.

 index = ord(ch)

 image = list(font0.data[index])

 return image

def ScrollLeft (z,buf):

 # scrolls image in Z leftward, rotating in data from buf

 # data in Z & buf are both changed by this operation!

 for row in range(0,8): #for each row in image:

 z[row] >>= 1 #shift current image row

 if buf[row] & 0x01: #is lsb of buffer high?

 z[row] |= 0x80 #rotate lsb of buf into msb z

 buf[row] >>= 1 #shift buffer row, too.

def ScrollText (st):

 # This is the all-important routine!

 # It will scroll the text on the Pi Matrix, left to right.

 # st holds the string that is being scrolled.

 # ch is the character to be scrolled onto the display.

 # buf holds the character image waiting to be scrolled onto display

 # Z holds the character image now being displayed

 # Each character is 8 bits (columns wide), so we will need to scroll

 # left 8 times for each character. Between each scroll operation,

 # we also need to quickly display (multilplex) each of the 8 rows.

 SPEED = 10 #scroll speed: lower=faster

 z = [0,0,0,0,0,0,0,0] #start with a blank display

 for character in st: #for each character of text

 buf = CharImage(character) #get next character image

 for shiftCount in range(0,8): #For each column in image

 MultiplexDisplay(z,SPEED) #display current image

 ScrollLeft(z,buf) #scroll display leftward

Main Program here.

print "Pi Matrix text scroller starting"

bus = smbus.SMBus(1) #initialize the I2 bus; use '0' for

 #older Pi boards, '1' for newer ones.

EnableLEDS() #initialize the Pi Matrix board

text = GetSomeText() #get the text

print "displaying '%s'" %text #echo text to console

ScrollText(text) #and scroll it!

DisableLEDS() #dont leave any LEDs on.

print "Done."

