

 Add a TFT

Display to the

Raspberry Pi

Part 1: Software SPI

Bruce E. Hall, W8BH

Objective: Learn how to interface and control a 160x128 pixel TFT LCD module using Python.

1) INTRODUCTION

I am a big fan of 2x16 character-based LCD displays. They are simple, cheap, and readily
available. Send ASCII character data to them, and they display the characters. Nice.

But sometimes characters are not enough. Colors, images, graphs, even text with fonts all
require something more. The 1.8” TFT module from Adafruit (and others) gives you this
option for the reasonable price of $25. Just buy one and have some fun learning what you
can do with it.

This TFT module is a 128x160 LCD matrix, controlled by the onboard Sitronix ST7735
controller. You send data to it serially using the Serial-Peripheral Interface (SPI) protocol.
Simple, right? Unfortunately, it’s not as simple as writing to a character mode display.

I started with two documents: the Siltronix datasheet and the Adafruit library. Take a look at
both of them. For me, both are bit complicated. Even the initialization code looks like a
programming nightmare. I like to start simple, and build as I go. Here is my approach.

2) MAKE THE CONNECTIONS

Let’s connect the hardware first. The Adafruit
module has 10 pins. On the bottom of the module
each pin is labeled, from
pin 1 ‘Lite’ to pin 10 ‘Gnd’.
Mount the display module
on a breadboard and
connect the pins to your
Raspberry Pi GPIO ports.

http://w8bh.net/pi/ST7735.pdf
https://github.com/adafruit/Adafruit-ST7735-Library

Male to female prototyping wires are very handy for making these point-to-point connections.
Alternatively, you can bring out all of the GPIO lines to the breadboard with various third-party
cables.

Here are the required connections. First,
apply 3.3V power to the backlight, pin 1 and
ground to pin 10. You should see the glow of
the backlight when you do this. If not, check
your power connections before proceeding
further.

Next, connect Vcc to 3v3 and the TFT select
line to Gnd.

Finally, hook up the three data lines: SCLK,
MOSI, and DC. That’s it!

3) SERIAL PERIPHERAL INTERFACE (SPI)

Finding a good starting point is sometimes the hardest part! I chose the SPI protocol, since
any data transfer to the TFT module would require this. The Pi has a built-in hardware SPI
interface, which is disabled by default. I did not have any SPI peripherals to test this
hardware interface, so I decided to start with a software interface instead.

At its core, the SPI algorithm is very straightforward:

 Put a data bit on the serial data line.

 Pulse the clock line.

 Repeat for all the bits you want to send, usually 8 bits at a time.

SPI is a bidirectional protocol, with two separate data lines. We need only one line, MOSI
(Master-out, Slave-in) to send data from the Pi to the display. The SPI protocol also specifies
different modes, depending on the active logic state of the clock line and whether the data is
transferred on low-hi or hi-lo transitions. In our module the clock input SCLK is active high,
and data is transferred on the low-to-high transition. This is called ‘Mode 0’.

Implementing Mode 0 SPI in software is very simple. It requires two small routines, and uses
two GPIO pins: one for the data and one for the clock. Here is the first routine:

def WriteByte(value, data=True):

 "sends byte to display using software SPI"

 mask = 0x80 #start with bit7 (msb)

 SetPin(DC,data) #low = command; high = data

TFT pin Function RPi GPIO

1 Backlight 3v3

2 MISO

3 SCK GPIO 24

4 MOSI GPIO 23

5 TFT select Gnd

6 SD select

7 D/C GPIO 25

8 Reset

9 Vcc 3v3

10 Gnd Gnd

 for bit in range(8): #loop for 8 bits, msb to lsb

 SetPin(SDAT,value & mask) #put bit on data line

 PulseClock() #clock in the bit

 mask >>= 1 #go to next bit

The mask starts out as 0x80, which is a logic one on bit 7. The data is compared against this
mask, and the GPIO line is set or reset depending on the result. For example, consider the
byte value 0x61 (0b11010001):

The ‘&’ operator performs a bitwise
Boolean AND function. The result
is nonzero, so the data line is set to
logic 1.

Clocking the data couldn’t be easier: take the clock pin high, and then return it low.

 def PulseClock():

 "pulses the serial clock line HIGH"

 SetPin(SCLK,1) #bit clocked on low-high transition

 SetPin(SCLK,0) #no delay since python is slow

For each bit, the mask is shifted to the right. At the end of the loop we will have updated the
GPIO data line 8 times, according to the bit values of our input data byte.

4) SENDING COMMANDS & DATA

Serial information sent to the display module can be either commands or data. For
commands, the D/C (data/command) input must be 0; for data, the input must be 1. We use a
third GPIO pin to supply this information. Here is the command routine:

 WriteCmd(value):

 "Send command byte to display"

 WriteByte(value,False)

Our WriteByte routine has a second optional parameter, data. When omitted, data defaults to
True, and the D/C pin is set to logic 1 in the WriteByte routine. We use WriteCmd to set the
data parameter to false, which then sets the D/C pin to logic 0.

5) ST7735

The Sitronix ST7735 is a single-chip driver/controller for 128x160 pixel TFT-LCD displays. It
can accept both serial and 8/9/16/18 bit parallel interfaces. On my module, and many others
like it, only the serial interface over SPI is supported. The Sitronix datasheet refers to this
interface as the four-wire SPI protocol.

The ST7735 supports over 50 different commands. Many of these commands fine-tune the
power output and color intensity settings, allowing you to correct for LCD display variations. In
this tutorial we need only six of those commands.

Value ‘0x61’ 1 1 0 0 0 0 0 1

Mask ‘0x80’ 1 0 0 0 0 0 0 0

Value & Mask 1 0 0 0 0 0 0 0

6) INITIALIZING THE DISPLAY

You should initialize the display before sending pixel data. I found a few code samples online,
but they are a bit confusing. My favorite library, the Adafruit-ST7735-Library on GitHub, calls
19 different commands with over 60 parameters! Let’s find an easier solution.

The first initialization step is to reset the controller, either by hardware or software. A
hardware reset requires an additional GPIO line to pulse the controller’s reset pin. A software
reset is a byte-sized command sent to the controller. I chose the software reset, but either
method should work fine. The reset function initializes the controller registers to their default
values. See the reset table in datasheet section 9.14.2 for more information.

After the reset, the controller enters a low-power sleep mode. We wake the controller and
turn on its TFT driver circuits with the sleep out SLPOUT command.

Finally, after turning on the driver circuits, we need to enable display output with the DISPON
(display on) command. Here is the code for our simplified, 3 command routine:

 def InitDisplay():

 "Resets & prepares display for active use."

 WriteCmd (SWRESET) #software reset, puts display into sleep

 time.sleep(0.2) #wait 200mS for controller register init

 WriteCmd (SLPOUT) #sleep out.

 time.sleep(0.2) #wait 200mS for TFT driver circuits

 WriteCmd (DISPON) #display on!

7) TIME FOR COLOR

First, check your hardware connections and run a script that calls InitDisplay(). Your display
should briefly blank, and then show a screen full of tiny, random color pixels. If it does, you
have successfully initialized the display. If not, check your hardware connections. It’s easy to
get a couple GPIO pins reversed, or forget a power/ground connection. Once you get it
working, it’s time to send some real data.

Sometimes we need to send a single byte, sometimes we need to send a sequence of bytes.
Here is a simple routine to send variable quantities of data:

 def WriteList (byteList):

 "Sends a list of bytes to display, as data"

 for byte in byteList: #grab each byte in list

 WriteByte(byte) #and send it

The default color mode for this controller is RGB666. Pixel colors
are a combination of red, green, and blue color values. Each
subcolor has 6 bits (64 different levels) of intensity. Equal amounts
of red, green, and blue light produce white. Equal amounts of blue

and green produce cyan. Red and green make yellow. Since each color component is
specified by 6 bits, the final color value is 18 bits in length. The number of possible color
combinations in RGB666 colorspace is 2^18 = 262,144.

We represent these color combinations as an 18 bit binary number. The 6 red bits are first,
followed by 6 green bits, followed by 6 blue bits:

r r r r r r g g g g g g b b b b b b

Our controller wants to see data in byte-sized chucks, however. For every pixel we must send
24 bits (3 bytes), arranged as follows:

R r r r r r - - g g g g g g - - b b b b b b - -

The lowest two bits of each red, green, and blue byte are ignored; only the 6 upper bits of
each byte are used. Here is a routine to send 24 bits of pixel data:

 def Write888(value,reps=1):

 "Sends a 24-bit RGB pixel data to display, with optional repeat"

 red = value>>16 #red = upper 8 bits

 green = (value>>8) & 0xFF #green = middle 8 bits

 blue = value & 0xFF #blue = lower 8 bits

 RGB = [red,green,blue] #assemble RGB as 3 byte list

 for count in range(reps): #send RGB value x optional repeat

 WriteList(RGB)

Notice how we can use right-shift and logical-and operators to select the portion of the color
value corresponding to red, green, and blue. Then we build a list of the 3 bytes, and send
them off. You can skip the list and call WriteByte directly, if you prefer:

WriteByte(red)

 WriteByte(green)

 WriteByte(blue)

Some controller/display modules use BGR encoding instead of RGB. For these modules you
should switch the write order of red and blue.

We must give screen coordinates before sending pixel data to the controller. The coordinates
are not a single (x,y) location, but a rectangular region. To specify the region we need the
controller commands CASET and RASET. The Column Address Set command sets the
column boundaries, or x coordinates. The Row Address Set sets the row boundaries, or y
coordinates. The two together set the display region where new data will be written.

 def SetAddrWindow(x0,y0,x1,y1):

 "Sets a rectangular display window into which pixel data is placed"

 WriteCmd(CASET) #set column range (x0,x1)

 WriteWord(x0)

 WriteWord(x1)

 WriteCmd(RASET) #set row range (y0,y1)

 WriteWord(y0)

 WriteWord(y1)

We need to specify an active region, whether we’re filling a large rectangle or just a single
pixel. First, specify the region; next, issue a RAMWR (memory write) command; and finally,
send the raw pixel data. Notice how the following routines are similar:

 def DrawPixel(x,y,color):

 "Draws a pixel on the TFT display"

 SetAddrWindow(x,y,x,y) #active region = 1 pixel

 WriteCmd(RAMWR) #memory write

 Write888(color) #send color for this pixel

 def FillRect(x0,y0,x1,y1,color):

 "Fills a rectangle with given color"

 width = x1-x0+1 #width of rectangle

 height = y1-y0+1 #height of rectangle

 SetAddrWindow(x0,y0,x1,y1) #set active region

 WriteCmd(RAMWR) #memory write

 Write888(color,width*height) #send color data for all pixels

Both routines set the window, issue a memory write command, and then send the color data.
For DrawPixel, the active window is a single pixel and only a single color value is sent. For
FillRect, the active window is the entire rectangle, and the color value is sent width*height
times.

In the final code below, I time how long it takes to paint the entire screen and then clear it. My
Pi takes about 50 seconds to run the test. That’s slow! But don’t be discouraged. In Part 2 of
this series we’ll learn how to run the display much, much faster using hardware SPI.

http://w8bh.net/pi/TFT2.pdf

8) PYTHON SCRIPT for TFT DISPLAY, PART 1:

#!/usr/bin/python

A Python script for controlling the Adafruit 1.8" TFT LCD module

from a Raspbery Pi.

Author : Bruce E. Hall, W8BH <bhall66@gmail.com>

Date : 27 Apr 2013

This module uses the ST7735 controller and SPI data interface

For more information, see w8bh.net

import RPi.GPIO as GPIO

import time

#TFT to RPi connections

PIN TFT RPi

1 backlight 3v3

2 MISO <none>

3 CLK GPIO 24

4 MOSI GPIO 23

5 CS-TFT GND

6 CS-CARD <none>

7 D/C GPIO 25

8 RESET <none>

9 VCC 3V3

10 GND GND

SCLK = 24

SDAT = 23

DC = 25

pins = [SCLK,SDAT,DC]

#RGB888 Color constants

BLACK = 0x000000

RED = 0xFF0000

GREEN = 0x00FF00

BLUE = 0x0000FF

WHITE = 0xFFFFFF

COLORSET = [RED,GREEN,BLUE,WHITE]

#ST7735 commands

SWRESET = 0x01 #software reset

SLPOUT = 0x11 #sleep out

DISPON = 0x29 #display on

CASET = 0x2A #column address set

RASET = 0x2B #row address set

RAMWR = 0x2C #RAM write

MADCTL = 0x36 #axis control

COLMOD = 0x3A #color mode

Low-level routines

These routines access GPIO directly

def SetPin(pinNumber,value):

 #sets the GPIO pin to desired value (1=on,0=off)

 GPIO.output(pinNumber,value)

def InitIO():

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 for pin in pins:

 GPIO.setup(pin,GPIO.OUT)

 GPIO.output(SCLK,0) #start with clock line low

Bit-Banging (software) SPI routines:

def PulseClock():

 #pulses the serial clock line HIGH

 SetPin(SCLK,1) #bit clocked on low-high transition

 SetPin(SCLK,0) #no delay since python is slow

def WriteByte(value, data=True):

 "sends byte to display using software SPI"

 mask = 0x80 #start with bit7 (msb)

 SetPin(DC,data) #low = command; high = data

 for b in range(8): #loop for 8 bits, msb to lsb

 SetPin(SDAT,value & mask) #put bit on serial data line

 PulseClock() #clock in the bit

 mask >>= 1 #go to next bit

def WriteCmd(value):

 "Send command byte to display"

 WriteByte(value,False) #set D/C line to 0 = command

def WriteWord (value):

 "sends a 16-bit word to the display as data"

 WriteByte(value >> 8) #write upper 8 bits

 WriteByte(value & 0xFF) #write lower 8 bits

def WriteList (byteList):

 "Send list of bytes to display, as data"

 for byte in byteList: #grab each byte in list

 WriteByte(byte) #and send it

def Write888(value,reps=1):

 "sends a 24-bit RGB pixel data to display, with optional repeat"

 red = value>>16 #red = upper 8 bits

 green = (value>>8) & 0xFF #green = middle 8 bits

 blue = value & 0xFF #blue = lower 8 bits

 RGB = [red,green,blue] #assemble RGB as 3 byte list

 for a in range(reps): #send RGB x optional repeat

 WriteList(RGB)

ST7735 driver routines:

def InitDisplay():

 "Resets & prepares display for active use."

 WriteCmd (SWRESET) #software reset, puts display into sleep

 time.sleep(0.2) #wait 200mS for controller register init

 WriteCmd (SLPOUT) #sleep out

 time.sleep(0.2) #wait 200mS for TFT driver circuits

 WriteCmd (DISPON) #display on!

def SetAddrWindow(x0,y0,x1,y1):

 "sets a rectangular display window into which pixel data is placed"

 WriteCmd(CASET) #set column range (x0,x1)

 WriteWord(x0)

 WriteWord(x1)

 WriteCmd(RASET) #set row range (y0,y1)

 WriteWord(y0)

 WriteWord(y1)

def DrawPixel(x,y,color):

 "draws a pixel on the TFT display"

 SetAddrWindow(x,y,x,y)

 WriteCmd(RAMWR)

 Write888(color)

def FillRect(x0,y0,x1,y1,color):

 "fills rectangle with given color"

 width = x1-x0+1

 height = y1-y0+1

 SetAddrWindow(x0,y0,x1,y1)

 WriteCmd(RAMWR)

 Write888(color,width*height)

def FillScreen(color):

 "Fills entire screen with given color"

 FillRect(0,0,127,159,color)

def ClearScreen():

 "Fills entire screen with black"

 FillRect(0,0,127,159,BLACK)

Testing routines:

def TimeDisplay():

 "Measures time required to fill display twice"

 startTime=time.time()

 print " Now painting screen GREEN"

 FillScreen(GREEN)

 print " Now clearing screen"

 ClearScreen()

 elapsedTime=time.time()-startTime

 print " Elapsed time %0.1f seconds" % (elapsedTime)

Main Program

print "Adafruit 1.8 TFT display demo"

InitIO()

InitDisplay()

TimeDisplay()

print "Done."

END ###

