

 Add a TFT

Display to the

Raspberry Pi

Part 2: Hardware SPI

Bruce E. Hall, W8BH

Objective: Control a 160x128 pixel TFT LCD module using hardware SPI and Python.

1) INTRODUCTION

In Part 1, we connected a 1.8” TFT module from Adafruit to the Raspberry Pi. We
implemented the SPI interface in software, using three of the Pi’s GPIO pins. This bit-ganging
method is a great way to learn about SPI, but it is maddeningly slow. It takes about 20
seconds just to clear the screen. There must be a better way.

The Raspberry PI is already equipped with an SPI interface, which is much faster. Let’s use it!

2) ENABLE SPI ON YOUR PI

By default, the hardware SPI is disabled. To enable it, start a recent version of raspi-config
and select advanced options -> SPI -> enable.

 $ sudo raspi-config

Reboot, and the spi module will be loaded into the Linux kernel. To confirm that SPI is loaded
and enabled, run the ‘listmodules’ command:

$ lsmod

SPI is loaded if you see an entry for spi_bcm2708. You could also use the following list
command:

 $ls /dev/spidev*

http://w8bh.net/pi/TFT1.pdf

When SPI is running this should return two device files: /dev/spidev0.0 and /dev/spidev0.1.
You can now use SPI from C. If you want to use it from Python, however, you’ll need to install
a wrapper module called py-spidev. Enter the following commands to obtain & install spidev:

 $sudo apt-get update
 $sudo apt-get install python-dev
 $git clone git://github.com/doceme/py-spidev
 $cd py-spidev
 $sudo python setup.py install

Now SPI is enabled, and the python spidev wrapper is installed.

3) CONNECT THE HARDWARE

The Adafruit module has 10 pins. On the bottom of the module each pin is labeled, from pin 1
‘Lite’ to pin 10 ‘Gnd’. Mount the display module on a breadboard and connect the pins to your
Raspberry Pi GPIO ports. Male to female prototyping wires are very handy for making these
point-to-point connections. Alternatively, you can bring out all of the GPIO lines to the
breadboard with various third-party cables.

Here are the required connections. First,
apply 3.3V power to the backlight, pin 1 and
ground to pin 10. You should see the glow of
the backlight when you do this. If not, check
your power connections before proceeding
further.

Next, connect Vcc to 3v3 and the TFT select
line to Gnd.

Finally, hook up the three data lines: SCLK,
MOSI, and DC. The only change from our
software SPI setup in Part 1 is the use of the
hardware SPI port (GPIO 10 & 11).

4) USING SPIDEV IN PYTHON

Just a few lines of code are needed to access the SPI interface from Python. The following
lines open, use, and close an SPI object:

 import spidev #include the spidev module

 spi = spidev.SpiDev() #instantiate a spidev object

 spi.mode = 0 #transfer modes 0-3, determined by device

 spi.max_speed_hz = 20000000 #set maximum data transfer speed to 20 MHz

 spi.open(0,0) #connect object to SPI (bus#,device#)

 spi.writebytes([byteList]) #output a list of bytes to SPI device

 spi.close() #disconnect object from SPI interface

TFT pin Function RPi GPIO

1 Backlight 3v3

2 MISO

3 SCK SLCK (GPIO 11)

4 MOSI MOSI (GPIO 10)

5 TFT select Gnd

6 SD select

7 D/C GPIO 25

8 Reset

9 Vcc 3v3

10 Gnd Gnd

Setting mode and transfer speed is not always necessary. In this application, data transfer is
unidirectional over the MOSI line, from the Pi to the TFT. The routines for unidirectional data
transfer are writebytes and readbytes. If your device needs bidirectional data transfer, use
spi.xfer2[data] instead. Up to 4K bytes per command can be transferred.

5) MODIFYING THE CODE FOR SPIDEV

Make a copy of the code from Part 1. The first modification is to add spidev. At the top of the
program, add the line:

import spidev

And at the end, change the main program to the following:

print “Adafruit 1.8 TFT display demo with Hardware SPI”

spi = spidev.SpiDev()

spi.open(0,0)

spi.mode = 0

InitIO()

InitDisplay()

spi.close()

print “Done.”

Finally, modify the WriteByte routine to call the hardware SPI instead of the software SPI:

def WriteByte(value, data=True):

 SetPin(DC,data)

 spi.writebyte([value])

Run the modified program. The TFT screen should fill with green color and then clear, just like
before, but faster. On my system, the total time decreased from 46 seconds to 17 seconds.
Not bad! But we can do better.

6) OPTIMIZE

When sending data to the TFT, most of the time we are calling the Write888 routine, which
sends data for a single RGB pixel as list of three bytes. Each byte gets sent, one at a time, via
our new WriteByte routine. We can reduce the number of procedure calls by bypassing
WriteByte and directly calling spi.writebytes with our RGB list. Modify the Write888 routine
with the following lines:

def Write888(value, reps=1):

 … #no change to first few lines

 RGB = [red,green,blue]

 SetPin(DC,1) #data follows

 for a in range(reps):

 spi.writebytes(RGB) #original was “WriteList(RGB)”

Run the program again. The screen action should be much faster now. On my system, the
total time has decreased to 6 seconds. That’s about 7x faster than software SPI!

http://w8bh.net/pi/TFT1.pdf

6) OPTIMIZE AGAIN

The speed of the data transfer is significantly improved by a) reducing the number of
procedure calls; and b) putting more data into the transfer buffer before evoking the SPI
transfer. Instead of sending individual pixels, let’s try sending a whole line of pixels at a time.

def Write888(value, width, reps): #add width = # pixels per transfer

 … #no change to first few lines

 RGB = [red,green,blue]

 SetPin(DC,1) #data follows

 for a in range(reps):

 spi.writebytes(RGB*width) #transfer multiple pixels!

 def FillRect(x0,y0,x1,y1,color): #need small modification to this routine

 … #no change to first few lines

 Write888(color,width,height) #call modified ‘888 routine above

Run the program with the above modifications. Finally we have some snappy screen action.
The runtime has decreased to 2.3 seconds, for a 20-fold improvement overall.

In Part 3 of this series we’ll speed up even more, and introduce some graphics routines.

http://w8bh.net/pi/TFT3.pdf

8) PYTHON SCRIPT for TFT DISPLAY, PART 2:

#!/usr/bin/python

A Python script for controlling the Adafruit 1.8" TFT LCD module

from a Raspbery Pi.

Author : Bruce E. Hall, W8BH <bhall66@gmail.com>

Date : 19 Feb 2014

This module uses the ST7735 controller and SPI data interface

PART 2 --- HARDWARE SPI

For more information, see w8bh.net

import RPi.GPIO as GPIO

import time

import spidev #hardware SPI

#TFT to RPi connections

PIN TFT RPi

1 backlight 3V3

2 MISO <none>

3 CLK SCLK (GPIO 11)

4 MOSI MOSI (GPIO 10)

5 CS-TFT GND

6 CS-CARD <none>

7 D/C GPIO 25

8 RESET <none>

9 VCC 3V3

10 GND GND

DC = 25

#RGB888 Color constants

BLACK = 0x000000

RED = 0xFF0000

GREEN = 0x00FF00

BLUE = 0x0000FF

WHITE = 0xFFFFFF

COLORSET = [RED,GREEN,BLUE,WHITE]

#ST7735 commands

SWRESET = 0x01 #software reset

SLPOUT = 0x11 #sleep out

DISPON = 0x29 #display on

CASET = 0x2A #column address set

RASET = 0x2B #row address set

RAMWR = 0x2C #RAM write

MADCTL = 0x36 #axis control

COLMOD = 0x3A #color mode

Low-level routines

These routines access GPIO directly

def SetPin(pinNumber,value):

 #sets the GPIO pin to desired value (1=on,0=off)

 GPIO.output(pinNumber,value)

def InitIO():

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 GPIO.setup(DC,GPIO.OUT)

Hardware SPI routines:

def WriteByte(value, data=True):

 SetPin(DC,data)

 spi.writebytes([value])

def WriteCmd(value):

 "Send command byte to display"

 WriteByte(value,False) #set D/C line to 0 = command

def WriteWord (value):

 "sends a 16-bit word to the display as data"

 WriteByte(value >> 8) #write upper 8 bits

 WriteByte(value & 0xFF) #write lower 8 bits

def WriteList (byteList):

 "Send list of bytes to display, as data"

 for byte in byteList: #grab each byte in list

 WriteByte(byte) #and send it

def Write888(value,width,count):

 "sends a 24-bit RGB pixel data to display, with optional repeat"

 red = value>>16 #red = upper 8 bits

 green = (value>>8) & 0xFF #green = middle 8 bits

 blue = value & 0xFF #blue = lower 8 bits

 RGB = [red,green,blue] #assemble RGB as 3 byte list

 SetPin(DC,1)

 for a in range(count):

 spi.writebytes(RGB*width)

ST7735 driver routines:

def InitDisplay():

 "Resets & prepares display for active use."

 WriteCmd (SWRESET) #software reset, puts display into sleep

 time.sleep(0.2) #wait 200mS for controller register init

 WriteCmd (SLPOUT) #sleep out

 time.sleep(0.2) #wait 200mS for TFT driver circuits

 WriteCmd (DISPON) #display on!

def SetAddrWindow(x0,y0,x1,y1):

 "sets a rectangular display window into which pixel data is placed"

 WriteCmd(CASET) #set column range (x0,x1)

 WriteWord(x0)

 WriteWord(x1)

 WriteCmd(RASET) #set row range (y0,y1)

 WriteWord(y0)

 WriteWord(y1)

def FillRect(x0,y0,x1,y1,color):

 "fills rectangle with given color"

 width = x1-x0+1

 height = y1-y0+1

 SetAddrWindow(x0,y0,x1,y1)

 WriteCmd(RAMWR)

 Write888(color,width,height)

def FillScreen(color):

 "Fills entire screen with given color"

 FillRect(0,0,127,159,color)

def ClearScreen():

 "Fills entire screen with black"

 FillRect(0,0,127,159,BLACK)

Testing routines:

def TimeDisplay():

 "Measures time required to fill display twice"

 startTime=time.time()

 print " Now painting screen GREEN"

 FillScreen(GREEN)

 print " Now clearing screen"

 ClearScreen()

 elapsedTime=time.time()-startTime

 print " Elapsed time %0.1f seconds" % (elapsedTime)

Main Program

print "Adafruit 1.8 TFT display demo with hardware SPI"

spi = spidev.SpiDev()

spi.open(0,0)

spi.mode = 0

InitIO()

InitDisplay()

TimeDisplay()

spi.close()

print "Done."

END ###

